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Abstract—Heterogeneous servers are becoming prevalent in

many high-performance computing environments, includingclus-
ters and datacenters. In this paper, we consider multi-objetive
scheduling for heterogeneous server systems to optimizensil-
taneously the application performance, energy consumptio and
thermal imbalance. First, a greedy online framework is pregnted
to allow the scheduling decisions to be made based on any well
defined cost function. To tackle the possibly conflicting olgctives,
we propose a fuzzy-based priority approach for exploring tke
tradeoffs of two or more objectives at the same time. Moreowe
we present a heuristic algorithm for the static placement ophysi-
cal machines in order to reduce the maximum temperature at tle
server outlets. Extensive simulations based on an emergirgass
of high-density server system have demonstrated the efféetness
of our proposed approach and heuristics in optimizing multple
objectives while achieving better thermal balance.

Keywords-Multi-objective optimization; online scheduling; ma-
chine placement; job response time; energy consumption; #r-
mal imbalance; tradeoffs; heterogeneous server systems

|I. INTRODUCTION

While application placement (or scheduling) has been stud-
ied in the past to optimize the performance in HSS, machine
placement has received less attention. The reason is that th
traditional metric of job performance or even energy consum
tion is independent of the positions of the physical machine
and hence are not affected by different placement configura-
tions. In the presence of heterogeneous servers, howbeer, t
placement of the machines can influence the distributiohef t
generated heat, which has been shown to play an important
role in the cooling efficiency of datacenters [16], [21]. \¢hi
it is not feasible to dynamically reconfigure the machines’
positions based on the temporal variation of the workloads,
we focus on static machine placement and propose a heuristic
that minimizes the maximum temperature at the server autlet
according to their heat distribution characteristics ia ttile
state. The strategy is effective due to the correlation betw
the machines’ static and dynamic power consumptions.

The placement of the applications is also challenging. In
general, jobs arrive in an online manner, thus any future
knowledge is unknown to the scheduler. Unlike many previous

Server systems that consist of heterogeneous computiggults (e.g., [2], [22]) that only optimize the jobs’ ex&on
nodes are becoming prevalent in clusters and datacenterstirhes, we perform online assignment of jobs to machinegusin
particular, many high-performance computing systems em-greedy framework, which allows the scheduling decisions
brace machine heterogeneity in their designs, which igbetl to be made based on any well-defined cost function. To
by many to be the key for achieving energy-proportionghckle multiple objectives at the same time, we propose a

computing [3], [5]. While application scheduling in the ei-

fuzzy-based priority approach that optimizes two objexdiv

geneous environments has been an important area of reseatcbequence. A fuzzy factor is introduced to explore any
for decades, traditional approaches have mostly focused gtential improvement for the second objective while rilgx

application performance as the sole optimization criterio

the first objective up to an acceptable range. The approach

recent years, the high energy consumption has emerged as flexible enough to incorporate multiple objectives, siash
major issue. Studies have shown that today’s datacenters thbse obtained by weighted sums, into the optimization, and
consuming nearly 2% of the global energy [13], and up ftie principle can potentially be applied to other multietijve

half of that is spent on cooling-related activities [18].rde,
the need for multi-objective schedulers that also consider
energy and cooling efficiency is imminent.

optimization problems.
To evaluate our proposed approach, we model and simulate
Christmann’s Resource Efficient Cluster Server (RECS) [4],

In this paper, we address the Multi-Objective Optimizatioa heterogeneous server system with high packing density and
Problem (MOOP) for Heterogeneous Server Systems (HS8tegrated cooling support. The system represents an émgerg
Besides the traditional objective of application perfonte class of high-performance and energy-efficient servers for
we also consider the energy consumption of the servers andithcks and clusters in a typical datacenter environmentdJsi
thermal imbalance as additional objectives. The lattetde®n average job response time, dynamic energy consumption and
particularly shown to have direct impacts on the efficienegt a maximum outlet temperature as three optimization objestiv
cost of cooling in datacenters [16], [21]. As these objexdivthe simulation results show the effectiveness of our fuzzy-
can be conflicting with each other, the aim is to efficientlpased priority approach for exploring and optimizing tlaele-
explore their tradeoffs, and if possible, to optimize two ooffs of two or more objectives. Our static machine placement
more of them simultaneously. To systematically tackle thiseuristic is also shown to provide significantly better thar
problem, we apply two complementary approaches, which dralance at the server outlets in terms of both maximum and
the placements of machines and applications, respectively average values.



The rest of this paper is organized as follows. Section #iddressed online scheduling for multiple objectives. V¢® al
reviews some related research in the field. Section Il stateonsider the placement problem for physical machines to
the models and the problems. Section IV presents our machauhieve better thermal balance in heterogeneous senveics) w
placement heuristic. Section V describes the job scheglulito our best knowledge has not been studied in the past.
heuristics and the fuzzy-based priority approach. The imu

tion results are presented in Section VI. Finally, Sectidh V 1. PROBLEM STATEMENT
concludes the paper with some future directions. A. System Model
Il. RELATED WORK Motivated by scheduling high-performance computing ap-

plications in Heterogeneous Server Systems (HS&%) con-
sider the following system model. There is a set =
”{Ml,Mg,--- ,M,,} of m heterogeneous machines, which
need to be placed inside a server system withpositions
Cy,Co,---,C,,} andl outlets{L4, Lo, --- , L;}. Each ma-

Multi-objective optimization has attracted much attentio
various problem domains. In the following, we describes&so
state-of-the-art approaches in this area.

First, combining multiple objectives into a single one is

popular approach. The authors in [15] used Dynamic Volta %ineMJ— € M has a static power consumptiﬁljt“t when it

& Frequency Scaling (DVFS) to tradeoff makespan with. . . . - o
energy consumption by considering a weighted sum of the tvlv idle or not executing any job. A SeI = {J1,/2,- -, Jn}

2 : o 8Pn jobs arrive at the system in an online manner, and each job
objectives. In [20], the same technique was applied in aimenl ; . . .
o . o . J; € J is characterized by a release timea processing time
manner to minimize a combined objective of job responzé

. . ; P 5 and a dynamic power consumptidf ; if it is executed
time .and energy. A_S|mllar appr_oach was taken in [19], Whlcon machineM ;. We study both job scheduling and machine
considers an additional objective of peak temperature in

multicore system, and hence optimizing the weighted sum %%cement for this mof’e" W.h'Ch are described in the folllg_ v
e ) 1) Job Scheduling:The jobs are to be scheduled in an
three objectives at the same time.

online manner to the machines. That is, each job needs to

Another approach is constrained optimization for one e assigned irrevocably to a machine without knowledge of

more objectives. In [17], DVS was used to minimize the energy . . . )
. . . . .. future job arrivals. Moreover, once a job has been assigned,
consumption subject to the makespan achieved in an |n|t|af

schedule. A double strategy was developed in [8] to minimizne0 p_rgemption or migration is allowed, WhiCh usually incars
the Euclidean distance between the generated solutionsegb a3|gn|f|cant_ cost in terms of data rea_llloca_tmn_. The total pow
o ; oo - consumption of machind/; at any timet is given by

of user-specified constraints for a four-objective optatian J
problem. The authors of [12] appliedconstraint method to tor I
cloud scheduling, which optimizes each objective in turthwi U= (t) = U™ + Z 9i(t) - Ui 1)
upper bounds on others. =1

Some research uses priority-based approaches to optimideered; ;(t) is a binary variable that takes valuef job J; is
multiple objectives in sequence. In [1], a bi-criteria comrunning on machiné/; at timet¢ and0 otherwise. In order to
promise function was introduced to set priorities betweemptimize performance, we restrict that each machine cah hos
makespan and reliability for scheduling real-time appiarzs.  only one job at any time. Thus, we hay€;" , 4 ;(t) < 1 for
To minimize carbon emission and to maximize profit, twoall 1 < j < m at all timet.
step policies were proposed in [11] to map applications to 2) Machine PlacementThe set of machines need to be
heterogeneous data centers based on the relative pridritys@tically placed in advance to the positions in the server.
the two objectives. In [6], the authors proposed heurigtics Assuming that the cooling of the system gives a steady airflow
optimize the QoS for interactive services before consideri pattern inside the server, the heat generated from eactiquosi
energy consumption on DVS-enabled multicore systems. to each outlet can be described byeat-distribution matrix

Lastly, Pareto-based approach is often used in the offlib® where each element, , € D denotes the fraction of the
setting to generate more than one non-dominant solutiohsat generated from positiafi, to outlet L,. As some heat
This technique was applied in [7] to tradeoff makespan amday be dissipated through other channels (such as sma#i)hole
energy consumption for heterogeneous servers. Evoluti@i-the server instead of the outlets or even stay in the server
ary algorithms were employed in [10] to obtain a set afnclosure, we hav§:§€:1 dey <1lforall<z<m.
alternative solutions for scheduling scientific workloaids  This model is general enough to capture the situation of
the Grid environment. In [23], the authors applied particlmany heterogeneous server systems, such as those in racks or
swarm optimization to approximate the Pareto frontier far t clusters of typical datacenters.
unrelated machine scheduling problem with uncertain imput )

In this paper, we present a fuzzy-based priority approadh. Scheduling Model
Although multi-objective scheduling with “fuzzy” or “good There are two subproblems: First, we need to decide a
enough” solutions [25], [26] are known in the Pareto-baged astatic machine placementhat is, to find a mappingr :
proach, our approach is novel in the online setting, especia{l,2,,--- ,m} — {1,2,,---,m} from server positions to
when different objectives have (soft) priorities. In thertimal- machines so that each positi@n,. is filled with a machine
aware scheduling literature, workload placement has begfy ). Then, we need awonline job schedulingstrategy to
considered in the presence of nonuniform heat distributi@ssign each arriving job to a machine for execution. Assgmin
in datacenter environments [16], [21], but no prior work hathat the power consumption is completely transformed into



heat, the total amount of heat (or power) received by outlemperatures. Moreover, these objectives can be confictin

L at timet can be expressed as with each other. In next section, we will propose heuristics
m address each one of them as well as to deal with their tragleoff
out o . tot
Ut = z:l da Uﬂw)(t) ‘ ©) D. Motivation for Machine Placement
i

Many server systems exhibit a non-uniform heat distributio
' between the positions and the outlets. Consider a simplerser
system with two positions and two outlets. The first position
T2 (t) = T 4 (U™ (1)) , (3) dissipates 50% of its generated heat to each outlet, whereas
. . the second position dissipates 80% of the heat to outlet 1
where functiory(U) converts the amount of he&t (in Watt)  gng 20% to outlet 2. Given two heterogeneous machines,
received by the outlet to the increase in its air temperatare j; g obviously more desirable to place the machine with
general, the air temperature is a function of air densin 5 |arger heat dissipation to the first position, in order to
kg/_m3)' airflow throughpu (in m_3/s),_and air heat capacity pajance the temperatures at the two outlets and to reduce the
C (in Joule/(°C - kg)) The following gives an expression of yeak temperature. The situation becomes more challenging i
g(U) in terms of these parameters [21]: practical server systems with a larger number of positions

Given a constant temperatuf&” at all inlets of the server
the temperature at outldt;, is given by

) — U 4 and outlets, as well as a more complex spatial correlation
9(U) = p-Q-C° ) between them. This motivates the study of machine placement
C. Optimization Objectives in heterogeneous systems.
We consider the followingMulti-Objective Optimization IV. STATIC MACHINE PLACEMENT HEURISTIC

Problem (MOOP) optimizing the performance of the jobs, In this section, we present a heuristic algorithm for static
minimizing the energy consumption of the machines, amdachine placement. As mentioned in Section III-D, the place

balancing the temperatures at the server outlets. ment of machines can have an impact on the thermal balance
For performance, we use the average response Bpg at the outlets of a heterogeneous server system. While such a
of the jobs as the metric, and it is defined as impact comes from both static and dynamic power consump-
n tions of the machines, the dynamic part is not a charadterist
Ruve = 1 Z(Ci -7, (5) of the machines and can be influenced by the job scheduling
n-.- decisions. Hence, we will only use static power consumption

wherec; andr; denote the completion time and release timté) pe”“’”’(‘ maCh'ne placemeht. . .
To obtain the optimal placement of machines based on their

of job J;, respectively. ) is NP-hard. si ) be sh in th
The energy consumption can be divided into two parts: ( SatlctE[)_ower Isbl A gr , Since it (_:aln €s 1(_);/1vn t? contadlan t_le
E.; due to the static power consumption of the machine Epar ftion problem [9] as a special case. Therefore, we wi

and (b)E,, . due to the dynamic execution of the jobs, whic ocus on heuristic solutions, and present a Greedy Machine
is given b;m ’ lacement (GMP) heuristic to reduce the maximum outlet

temperature. Algorithm 1 presents its pseudocode.
B LS 5 P UL 6 First, GMP sorts the machines in descending order of static
dyne = ZZ A ARG ©6) power consumption, since machines that consume more power
will have larger contributions to the temperatures at atlais,
whered; ; = 1 if job J; is executed on maching/; and 0 so they will be placed first to avoid high peak temperature
otherwise. The total energy consumption is therefbfe = values. LetT?** denote the existing temperature at ouflgt
Estat + Egyne- In this paper, we assume that all machines aggd let 79 (z) denote the maximum outlet temperature if

max

turned on at all times, so the static energy is independenttgé next machiné/; € M is placed in positiorC,, i.e.,

the scheduling of the jobs. ut ut tat
For the thermal imbalance, we use the maximum tempera- Traa() = kIBf”,’fl(Tk +9(de i - UF)) - ©)

ture7°% and average temperaturg’! at the server outlets as
i ut out j i
metrics. Apparently, larger values f@l7%, and77;; indicate positionsC,, € ¢ that minimizes the maximum outlet tem-

i=1 j=1

Then, machineM; will be placed in one of the remaining

worse thermal imbalance. These two metrics are specified &?rature, .2’ — argmin, T (). After that, the filled
To" =  max max T (t) , (7) position C, will be removed from the available set and
tiststz 1sksl the temperatures at all outlets will be updated. The algorit
out 1 t2 Tout () 8 terminates when all machines ji are placed in the server.
we T (ty—ty) -1 /m kz:l (t)dt (8) For the complexity of the GMP heuristic, the sorting and

initialization takesO(mlogm + I) time. In the iteration,
wherelt, t;] denotes the interval of interest, in which all jobglacing each machine incu@(ml) time as each remaining
arrive and complete their executions.

Due to the heterogeneity of the machines, different job There tends to be a postive correlation between the statiepconsump-
heduli d hi lacement strategies mav res Itlon of the machines and their dynamic power. That is, a nmechvith a
scheaduling and machine p al y u thiﬁ}]er static power also consumes a higher dynamic powen wkecuting a

very different job response time, dynamic energy and outlgiten job. This justifies the use of static power alone for hirse placement.



Algorithm 1 Greedy Machine Placement that minimize job response time, dynamic energy consumptio
Input: Set M = {Mi, Mz, -+, Mn} of m machines, and maximum outlet temperature, respectively. The folhgwi
setC = {C1,Cs, -+ ,Cm} of m server positions, describes the three heuristics and their cost functions.

and heat distribution matrid. . . .
Output: A mapping« from server positions to machines. - Fastest Assign job J; to a machine that renders the

1: Sort the machines in descending order of static power copsum  Minimum job response time. The cost function is
tions, i.e., U™ > Ust*t > ... > Ustet R ol

2: Initialize T¢** =0 forall 1 <k <1 Hi,j = max(r;, tj )+ Py, (10)

3: for j =1tom do

4 ' =0andT2 (z') = o

wherer; is the release time of job; and t‘}”‘”l denotes

5. for eachC, € C do the latest time when maching; becomes available.
6: Tt (x) = maxg—1.1 (T¢"" + g(doi - US*)) « GreenestAssign jobJ; to a machine that incurs the min-
7: if Tout (z) < TouE (') then imum dynamic energy consumption. The cost function is
8: Tow (2') = To¥ (z) andz’ = =
9: end if HlEj = Pi,j . Ui,j . (11)
10:  end for L . T
11:  Place machiné\/; to positionC,, i.e., 7(z') = j o Coolest Assign jobJ; to a machine that minimizes the
12:  UpdateTy"" = TP"" + g(dyr s - US™) forall 1 < k < 1, maximum outlet temperature. The cost function is

and updateZ = C\C,/ T t
13: end for H;; = k@%”l(Tgu +9(djr-Uij)) , (12)

whereT?“* denotes the existing temperature at ouflgt

position is tested to determine the maximum outlet tempera- before assigning the job, ank ;. denotes the fraction of
ture. Therefore, the overall complexity (m?1). heat contributed from machink/; to outlet L.

V. ONLINE JOB SCHEDULING HEURISTICS gbpl\:lgjallt(i:-hObjective Scheduling with a Fuzzy-Based Priority

With a fixed machine placement, we need to perform job - - .
To optimize two or more objectives at the same time, we

scheduling in an online manner. This section presents $euri i based oriorit ht ¢
tics for online job scheduling to optimize various objeetyv propose a noveluzzy-based priorityapproach to pertorm

online job scheduling.
A. Greedy Online Scheduling Framework 1) Dual-Objective SchedulingiVe first consider optimizing

All of our online scheduling heuristics fall into a GreedyWe objectives, for which we use the following compositetcos
Online Scheduling (GOS) framework, which is described if#nction

XY I7
Algorithm 2. H00 = (HY (), HY) - (13)
_ i _ In this case, the objectiveX and Y are considered one
Algorithm 2 Greedy Online Scheduling after another by first selecting all machines that offer tastb

'“pug Arrival of a new job J;, and it%fp_mf?essing “mdﬂj and  performance in terms of(, and then selecting among this
ynamic_power consumptio;,; if it is executed on any g ,qet any machine that offers the best performance in terms

machineM; € M. . . A
Output: Assigﬁmeﬁfof jobJ; to a machine in\. of Y. To avoid depriving the second objective altogether, a

1 j=0andH, ;; = o0 fuzzy factorf is used to relax the selection criterion for the

2: for j =1tom do first objective up to an acceptable margin. The purpose of
3. if H;; < H,; then . introducing this factor is to explore any potential improment

g' englﬁj/ = Hi; andj’ = for Y while maintaining the performance fo¥ within the

6: end for target range. Figure 1 illustrates the basic principle a$ th

7: Assign job.J; to machine)M;, approach using a simple example. As we can see, the machine

that compromises the first objectiv€ up to the specified
uzzy factor is selected to improve the second objective
he simple priority approach, on the other hand, would have
Bheduled for the besX with much worseY. The value of
the fuzzy factor as well as the priority should depend on the
6ﬁ!ative importance of the two objectives to optimize, whic

Under the GOS framework, any newly arrived job will b
assigned greedily to a machine. The variablg; shown in
the algorithm represents the cost of assigning the new |
J; to machinel;. Depending on the target objectivel; ;
can be a function of job response time, energy consumpti

outlet temperature, or even a composite or combined fumCtiSa-?obiﬁ]S?;n:)gntthfizuzsir);gge r?c})lﬁierirr]] i]deméry)sstrl?rf%ework as
of these objectives. The job will then be assigned to a machi b y P y

3y W e i cot, '~ i 1. The res /%07 1 AGST % e cost nclon o o rt bty
of this section will describe heuristics that minimize dint y

cost functions depending on the optimization objectives. factor into account, i.e.,

HX — HX |
B. Mono-Objective Scheduling HY, = H : (14)

Mono-objective scheduling considers a single optimizatio
objective when deciding where to assign each job. In this subherermm andHX  denote the minimum and maximum

i,max

section, we present three mono-objective scheduling $iiegi costs in terms of objectiv& among all machines to assign



v Selected by simple ties/weights among different objectives and the fuzzydact

priority approach again depend on their relative importance.
Selected by fuzzpasec
priority approach VI. PERFORMANCEEVALUATIONS
4 In this section, we will evaluate the proposed machine
placement and job scheduling heuristics. The evaluatioas a
A A performed using the DCworms simulator [14] developed for

modeling and simulating performance, power and thermal
% behaviors of server systems in datacenters.

Acceptable range for objective
with a fuzzy factof A. Server Platform
Our modeled platform is based on ChristmanR&source
Fig. 1. The fuzzy-based priority approach in dual-objectscheduling.  Efficient Cluster Server (RECSY], which is a 1U multi-server
system consisting of 18 heterogeneous computing nodes with
_ _ ) integrated cooling support. The built-in power and tempeea
job J;. The following rule compares the relative costs of anyensors allow the hardware and the application profiles to
two machines. _ be monitored and modeled with fine granularity and high
~ Fuzzy-Based Priority Rule: The costs incurred by )S(Cﬁedu"accuracy. This system represents an emerging class of high-
ing job J; on any two machines/;, andM;, satisfyH; ;' < gensity servers, which allows a significant number of them to

H;Y" if one of the following conditions holds: be integrated in just a few rack units. While the RECS platfor
o« HY, < f<H},, or is chosen to conduct our experiments, our proposed models
« HY, < fandHY < fandH}, <H),, or and heuristics can be generally applied to other heteragene
. FX <X < f and Y. — Hy or7 servers at both cluster and datacenter environments.
L HJ1 2! Our heterogeneous RECS server consists of 8 nodes of Intel
o f<HF; <Hi,or i7-2715QE, 4 nodes of Intel Atom D510 and 6 nodes of AMD
o [<HY, =HY, andH);, < H},. G-T40N. Table | describes the detailed hardware configumati

This rule can be applied to optimize any two objectivehe 18 positions of the server are laid out in two rows, as
with well-defined cost functions, such as the ones given @fepicted in Figure 2, where two positions along the same
Equations (10)-(12) for job response time, energy consiempt column share a pair of inlet and outlet, with airflow drawn
and maximum outlet temperature, respectively. by fans directly attached to them.

2) Multi-Objective SchedulingWith more than two ob-
jectives, we can take a similar approach of optimizing one
objective after another, but with combined cost functidmes t

TABLE |
HARDWARE CONFIGURATION OF THERECSSERVER

consist of two or more objectives. For instance, Weighted Intel Core | Intel Atom | AMD
summethod can be used to combine job response time an I7-2715QE| D510 | G-T40N
energy consumption to form a single objective, i.e., Frequency 21GHz | 1.66GHz | 1GHz
. . Static power 11.5W ow 6.4W

H fJE — aH sz +(1-a)H fj , (15) #Cores (#Threads 4(8) 2(4) 2(2)

’ - _ - _ _ RAM 16GB 2GB 4GB

wherea € [0, 1] denotes the relative weight assigned to job Cache 6MB IMB IMB

response time. Note that the cost functions for both ohbjesti Node count 8 4 6

are normalized between 0 and 1 to form meaningful com-
bination. Then, to optimize the maximum outlet temperature

with the combined cost (of job response time and energy Lo

consumption), the following composite cost function can be Outlets
constructed X
T,RE 7
Hi; ™ = (HL () HEF) (16) .
or conversely o
18
RE,T TTRE T
Hz’,j = <Hi,j (f)aHi,j> : (17) ®
In the case where the first objective is a combination of Inlets
two or more objectives as in Equation (17), the combined cost _
needs again to be normalized to take into account the fuzzy Fig. 2. The layout of the RECS server system.
factor, i.e., . . . -
o HRE _ [JRE. For simulation purpose, the temperature at all inlets igdfixe
HJY = H - (18) at 7" = 25°C. The thermodynamic constants are set to
i,maz &min be p = 1.168kg/m? and C' = 1004Joule/(°C - kg). With

The fuzzy-based priority rule described previously camthall fans turned on, the air throughput at each inlet/outtet i
be applied in the same way as before. The exact priosround @ = 0.0055m3/s, according to the measurements



performed in [24]. Simple profiling of the hardware also give Two versions of the three heuristics are implemented. One
the following heat-distribution matrix: considers only the available or idle machines when assignin
each job, and in case all machines are busy the assignmént wil

L !f v=k be postponed until some machine becomes available. The othe
dep =084, fz=k+9, version considers all machines and therefore may possibly
0, otherwise reserve a future time slot of a machine for the job in advance.

which suggests that each inlet node contributes only 8 Péey are compared with two other scheduling policies, ngmel

of the generated heat to the corresponding outlet due to . . .
relatively long heat dissipation path. The remaining héats andomand RoundRobinThe former assigns each job to an
' available machine randomly, and the latter selects the mesh

in or is dissipated through other directions of the server A . .
L in turn for assigning the jobs. Both policies are commonkydis
enclosure, which is hard to measure.

for balancing the machine loads.
Figures 3 and 4 present the simulation results of the two
versions. The results show that the three heuristiestest
eenestand Cooles} achieve the best performance with
respect to their target objective functions. For the “alalid”

heuristics as shown in Figure 3, the performance gains under

specific approaph was employe(_j tq build_ the_ performa”f%Sht loads are up to 40-60% for average job response time,
and power profiles of these applications with different 'hpléround 15% for dynamic energy consumption, and 1.4€1.6
parameters and number of threads. Table Il shows the aver € maximum outlet temperature. The advan,tages diminish

execution time and dynamic power consumption of each aﬁbwly as the load intensity increases, as the utilizatibthe

pllcatl?_n on thg th_ree types of comp_utl;ng nodej. The e MEIELLZ'computing nodes becomes higher, so jobs tend to be postponed
execution mo te (ie., runnlngtone]czgr(]) perl_not_ €) Wasmi;el_otp assigned to nodes with less energy or thermal efficiency.
ensure accurate measurements of tn€ application pro For the average outlet temperature, all heuristics havédasim

of values in the table means that the pgrtlcular applicati I rformance excepRoundRobin which performs better at
could not be executed on the corresponding node. Therefare

o X - - edium to high loads at th f job ti
the node is ignored by the online scheduling heuristics fg um *o iigh foads at the expense of Job response fime

ianing that licati hd energy consumption.
assigning that application. For the performance of the “all” heuristics, by comparing

Figures 3(a) and 4(a), we can see that the average job respons
time becomes worse by at least an order of magnitude. (Note

Aﬁe call the two versions “available” and “all”, respectiyel

B. HPC Benchmarks and Workload

For the simulation, we adopt the set of HPC benchmar
used in [14], which consist of the following applicationft;,
c-ray, abinit, linpack, and tar. In particular, an applicat

TABLE Il
AVERAGE EXECUTION TIME AND DYNAMIC POWER CONSUMPTION OF THE

BENCHMARKS. the difference in scale.) Since all machines are considiered
Iniel Core Intel Atom AMD this case, a subset of t_h_em is almosfc alvyays_ selected far thei
i7-2715QE D510 G-T40N energy and thermal efficiency, resulting in highly unbakshc
T 1375s, 11.56W| 6040s, 0.75W | 7710s, 2.58W machine loads and hence deterioration of job response.times
cray | 1445s, 11.79W| 8445s, 0.84W| 9650s, 2.16W For the same reason, the advantageSfenesiand Coolest
abinit | 4388s, 22.52W - - in terms of dynamic energy consumption and maximum outlet
linpack | 1360s, 18.30W| 20130s, 2.20W - temperature are maintained even at high load intensities.
tar 6400s, 9.83W | 23385s, 1.79W| 22900s, 3.08W| |y particular for Greenest all jobs are concentrated on the

most energy-efficient nodes (e.g., Intel Atom) while theeoth

The simulation workload consists of 1000 jobs, and eaghachines with low power efficiency but high performance

job is randomly selected from one of these benchmarks. Theg., Intel Core i7) are left idle. Naturally, it leads toeth
jobs arrive at the system according to the Poisson procéss. Towest average outlet temperature for this heuristic.
load intensityp is proportional to the average arrival rale  For theFastestheuristic, Figure 5 shows that the “available”
(in number of jobs per hour), and it is given by= A\/10.  version, which implicitly balances the utilization of thern-
puting resources, outperforms the “all” version in termshaf
jobs’ average response time at high loads. The “all” version
We apply the greedy heuristic presented in Section IV tn the other hand, performs better in terms of the maximum
generate a machine placement for the RECS server systeasponse time of all jobs, since it makes the best local iecis
which will be used throughout this section for evaluatinfpr each individual job regardless of the machine avaitgbil
different scheduling heuristics. In Section VI-C4, we witime In the rest of this section, we will focus on the “available”
back to machine placement and compare our heuristic whieuristics to study the tradeoffs of various objectives el
two alternative placements for evaluating the impact oebutimpact of different machine placements.
temperatures. All results are obtained by carrying out the2) Impact of Fuzzy Factor for Dual-Objective Scheduling:
experiments 10 times and taking the average. We now evaluate the effectiveness of the fuzzy-based priori
1) Performance of Mono-Objective HeuristicdVe first approach for exploring the tradeoffs between two objestive
evaluate the three mono-objective scheduling heuristies pFor this purpose, we consider three cost functions defined in
sented in Section V-B. Their performance will be used as refquations (10)-(12), for minimizing average job respoimsef
erences for exploring the tradeoffs of two or more objestivedynamic energy consumption and maximum outlet tempera-

C. Simulation Results
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S Fastost (val) 4 Figures 6(c) and 6(f) show that the maximum outlet temper-

- Fastest (A ature can be minimized simultaneously with average respons

time or dynamic energy consumption as soon as the second
objective (temperature) is taken into account, i.2.> 0,

and before the first objective (response time or energy) is

Average Response Time (secs)
Maximum Response Time (secs)

.5
4 compromised, i.e.f < 0.6. Similar results can be observed in
0 05 Figures 6(g) and 6(h), which optimize the temperature leefor
20 40 60 80 100 20 40 60 80 100 N . .
Load Intensity (%) Load Intensity (%) response time or energy consumption. In this case, the decon
@ (b) objective stabilizes aftef reache9.3, and interestingly, the
Fig. 5. Comparison of the two versions of tRastestheuristic in terms of first ObJeCtlve (tempera_ture) !S also reduced sllgh_tly (by-o
average and maximum job response time. 0.2°C) due to the consideration of the second objective. The

improvement is probably due to the perturbation introduoed
the scheduling decision that helped escape the local optimu
ture, respectively. which was experienced by considering temperature alone. In
Figure 6 shows the impact of varying the fuzzy factor general for optimizing response time or energy vyith maximum
from —1 to 1 when minimizing any two out of the threeOutlet temperature,_the fuzzy factor can be set in the rafige o
objectives at 20% load intensity. In particulaf, — —1 0-3,0.6] for the optimal performance.
means that the scheduling decision is solely based on thdigure 7 shows the results when the load intensity is at 40%.
first objective. In this case, ties on the first cost functioiS can be seen, by setting appropriate values for the fuzzy
are broken randomly, so the second objective is completdgtor, desirable tradeoffs between average responsesiue
ignored. Figures 6(a), 6(e) and 6(i) along the diagonal sh@lynamic energy can again be attained. Temperature canelso b
the optimization of two identical objectives, which maken ©OPtimized together with the other two objectives, but sasl
equivalent to the mono-objective case. The other figures pf§ @ higher value due to the increase of load intensity. The
the changes of the two objectives as a functiorf pivith the results demonstrate the effectiveness of this fuzzy-baged
first objective shown on the left axis and the second one orProach for exploring and optimizing dual-objective traffgo
the rightY axis. 3) Results of Multi-objective SchedulingVe use average
First, Figures 6(b) and 6(d) indicate no change to the avéesponse time, dynamic energy consumption and maximum
age response time and dynamic energy consumption unlessatiet temperature as the three objectives to evaluate the
fuzzy factor f is set above 0.7 fofi;;" and 0.5 forH;”™. performance of multi-objective scheduling.
The results suggest that it is difficult to have good perfaroga  Previous results on dual-objective scheduling have shown
for one objective without significant performance degramtat the difficulty of minimizing response time and energy si-
for the other. Depending on the relative importance of the twnultaneously. Hence, we combine the two objectives with
objectives, the fuzzy factor in this case can be set in thgeam weighted cost functiod{i{*}E as defined in Equation (15),
of [0.6,0.9] to obtain a desirable tradeoff. and optimize it together with temperature using the contposi
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functionsHiT;RE and as defined in Equations (16) 4) Impact of Different Machine Placementsastly, we

and (17). Since similar pbrformance was observed for the twtudy the impact of machine placement on the performance
cases, we only present the results ﬁjﬁRE. of the online scheduling heuristics. To this end, we geeerat
Figure 8 shows the results with different valuescoéind £ three different placements of the machines, one by our GMP
at 20% load intensity. First, as increases from 0 to 1 in the heuristic and two by its variants which we call MP2 and MP3,
weighted sum, we can clearly see the performance transitigSPectively. The two variants work in a similar fashion as
for both response time and energy consumption as long as ti\iP. However, MP2 sorts the machines in ascending order
are considered, i.ef # —1. When the value ofv is large, ©f static power instead of descending order, while MP3 assig
indicating that response time is favored more than enengy, €ach machine to a remaining position that maximizes the max-
response time is reduced gsincreases. The same can bdmum outlet temperature instead of minimizing it. Appahgnt
observed for energy consumption when the value & small. MP2 and MP3 are counter-intuitive, so they may not generate
This demonstrates the effectiveness of usfrig exploring the desirable machine configrations. They are included to simpl
potential performance improvements for combined objestiv démonstrate the impact of different machine placements on
Figure 8(c) shows that the maximum outlet temperature ciif Performance, especially the outlet temperature.
again be slightly improved by_ co_nS|der|r_19 the response tlmeFigure 10 shows the performance of the three machine
and energy as the second objective, which also correspond fo for th heduling heuristic that optiite
the results shown in Figures 6(g) and 6(h). P acements ortne same Isg%;? u'ing heunstic that op
. ) .. .._combined cost functiod?, ;" with f = 0.1 anda = 0.4.
Figure 9 shows the performance of the algorithm with fixeghe results clearly show ‘that job response time and energy
f = 04 anda = 0.5. We call the resulting algorithm consumption are not affected by different machine placesaen
Combinedand compare it with the three reference heur'St'CF{owever, our GMP heuristic reduces the maximum outlet tem-
The results shoyv a good tradeoff t_)etween average respopsgyture byl°C compared to MP2, and depending on the load
tlme and dynamic energy consumption under all system |0"?‘%$'the system the improvement is up t6C3compared to MP3.
using Fastestand Greenestas the references. Moreover, thigreover, GMP also improves the average outlet temperature
is achieved together with good maximum outlet temperatuig;, around 0.1-0.2C, especially at high system loads. Similar
which is close to the one obtained by Weolestheuristic.  parformance was also observed for other scheduling hisstist

RE,T
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The results confirm that machine placement indeed affeets tf our approach for exploring and optimizing the tradeoffs
thermal balance at the server outlets, which directly ingadetween two or more objectives. In particular, response tim
the efficiency and cost of the cooling system. and energy were shown to be orthogonal metrics, which are
difficult to minimize simultaneously. However, either ofeth

or a weighted combination can be optimized together with
In this paper, we have considered online job scheduling aodtlet temperature by setting appropriate fuzzy factoirsalfy,
static machine placement for heterogeneous server systedifferent machine placements were shown to have a strong
We applied a novel fuzzy-based priority approach to a greeitypact on the thermal balance at the server outlets, whish ha
online scheduling framework for simultaneously optimginimplications for the cost of the cooling system.

multiple objectives, including average job response tithe,

namic energy consumption and maximum outlet temperatureFor future work, we will apply power management tech-
Simulations based on a high-density server system havershaviques, such as DVS or turning off idle machines, to reduce
that optimizing only one objective can have a negative impathe static power consumption for better energy and thermal
on the others. The results also demonstrated the effeethgenrefficiency. For machine placement, Computational Fluid Dy-

VIl. CONCLUSION AND FUTURE WORK
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namics (CFD) simulations can be carried out to validate ties)
results. Finally, the approach presented in this paper @n b

. . . 14
extended to scheduling multiple servers in a datacenter Loy]
directly considering the cooling cost.
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