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Abstract—Heterogeneous servers are becoming prevalent in
many high-performance computing environments, includingclus-
ters and datacenters. In this paper, we consider multi-objective
scheduling for heterogeneous server systems to optimize simul-
taneously the application performance, energy consumption and
thermal imbalance. First, a greedy online framework is presented
to allow the scheduling decisions to be made based on any well-
defined cost function. To tackle the possibly conflicting objectives,
we propose a fuzzy-based priority approach for exploring the
tradeoffs of two or more objectives at the same time. Moreover,
we present a heuristic algorithm for the static placement ofphysi-
cal machines in order to reduce the maximum temperature at the
server outlets. Extensive simulations based on an emergingclass
of high-density server system have demonstrated the effectiveness
of our proposed approach and heuristics in optimizing multiple
objectives while achieving better thermal balance.

Keywords-Multi-objective optimization; online scheduling; ma-
chine placement; job response time; energy consumption; ther-
mal imbalance; tradeoffs; heterogeneous server systems

I. I NTRODUCTION

Server systems that consist of heterogeneous computing
nodes are becoming prevalent in clusters and datacenters. In
particular, many high-performance computing systems em-
brace machine heterogeneity in their designs, which is believed
by many to be the key for achieving energy-proportional
computing [3], [5]. While application scheduling in the hetero-
geneous environments has been an important area of research
for decades, traditional approaches have mostly focused on
application performance as the sole optimization criterion. In
recent years, the high energy consumption has emerged as a
major issue. Studies have shown that today’s datacenters are
consuming nearly 2% of the global energy [13], and up to
half of that is spent on cooling-related activities [18]. Hence,
the need for multi-objective schedulers that also considerthe
energy and cooling efficiency is imminent.

In this paper, we address the Multi-Objective Optimization
Problem (MOOP) for Heterogeneous Server Systems (HSS).
Besides the traditional objective of application performance,
we also consider the energy consumption of the servers and the
thermal imbalance as additional objectives. The latter hasbeen
particularly shown to have direct impacts on the efficiency and
cost of cooling in datacenters [16], [21]. As these objectives
can be conflicting with each other, the aim is to efficiently
explore their tradeoffs, and if possible, to optimize two or
more of them simultaneously. To systematically tackle this
problem, we apply two complementary approaches, which are
the placements of machines and applications, respectively.

While application placement (or scheduling) has been stud-
ied in the past to optimize the performance in HSS, machine
placement has received less attention. The reason is that the
traditional metric of job performance or even energy consump-
tion is independent of the positions of the physical machines,
and hence are not affected by different placement configura-
tions. In the presence of heterogeneous servers, however, the
placement of the machines can influence the distribution of the
generated heat, which has been shown to play an important
role in the cooling efficiency of datacenters [16], [21]. While
it is not feasible to dynamically reconfigure the machines’
positions based on the temporal variation of the workloads,
we focus on static machine placement and propose a heuristic
that minimizes the maximum temperature at the server outlets
according to their heat distribution characteristics in the idle
state. The strategy is effective due to the correlation between
the machines’ static and dynamic power consumptions.

The placement of the applications is also challenging. In
general, jobs arrive in an online manner, thus any future
knowledge is unknown to the scheduler. Unlike many previous
results (e.g., [2], [22]) that only optimize the jobs’ execution
times, we perform online assignment of jobs to machines using
a greedy framework, which allows the scheduling decisions
to be made based on any well-defined cost function. To
tackle multiple objectives at the same time, we propose a
fuzzy-based priority approach that optimizes two objectives
in sequence. A fuzzy factor is introduced to explore any
potential improvement for the second objective while relaxing
the first objective up to an acceptable range. The approach
is flexible enough to incorporate multiple objectives, suchas
those obtained by weighted sums, into the optimization, and
the principle can potentially be applied to other multi-objective
optimization problems.

To evaluate our proposed approach, we model and simulate
Christmann’s Resource Efficient Cluster Server (RECS) [4],
a heterogeneous server system with high packing density and
integrated cooling support. The system represents an emerging
class of high-performance and energy-efficient servers for
racks and clusters in a typical datacenter environment. Using
average job response time, dynamic energy consumption and
maximum outlet temperature as three optimization objectives,
the simulation results show the effectiveness of our fuzzy-
based priority approach for exploring and optimizing the trade-
offs of two or more objectives. Our static machine placement
heuristic is also shown to provide significantly better thermal
balance at the server outlets in terms of both maximum and
average values.



The rest of this paper is organized as follows. Section II
reviews some related research in the field. Section III states
the models and the problems. Section IV presents our machine
placement heuristic. Section V describes the job scheduling
heuristics and the fuzzy-based priority approach. The simula-
tion results are presented in Section VI. Finally, Section VII
concludes the paper with some future directions.

II. RELATED WORK

Multi-objective optimization has attracted much attention in
various problem domains. In the following, we describes some
state-of-the-art approaches in this area.

First, combining multiple objectives into a single one is a
popular approach. The authors in [15] used Dynamic Voltage
& Frequency Scaling (DVFS) to tradeoff makespan with
energy consumption by considering a weighted sum of the two
objectives. In [20], the same technique was applied in an online
manner to minimize a combined objective of job response
time and energy. A similar approach was taken in [19], which
considers an additional objective of peak temperature in a
multicore system, and hence optimizing the weighted sum of
three objectives at the same time.

Another approach is constrained optimization for one or
more objectives. In [17], DVS was used to minimize the energy
consumption subject to the makespan achieved in an initial
schedule. A double strategy was developed in [8] to minimize
the Euclidean distance between the generated solutions to aset
of user-specified constraints for a four-objective optimization
problem. The authors of [12] appliedǫ-constraint method to
cloud scheduling, which optimizes each objective in turn with
upper bounds on others.

Some research uses priority-based approaches to optimize
multiple objectives in sequence. In [1], a bi-criteria com-
promise function was introduced to set priorities between
makespan and reliability for scheduling real-time applications.
To minimize carbon emission and to maximize profit, two-
step policies were proposed in [11] to map applications to
heterogeneous data centers based on the relative priority of
the two objectives. In [6], the authors proposed heuristicsto
optimize the QoS for interactive services before considering
energy consumption on DVS-enabled multicore systems.

Lastly, Pareto-based approach is often used in the offline
setting to generate more than one non-dominant solutions.
This technique was applied in [7] to tradeoff makespan and
energy consumption for heterogeneous servers. Evolution-
ary algorithms were employed in [10] to obtain a set of
alternative solutions for scheduling scientific workloadsin
the Grid environment. In [23], the authors applied particle
swarm optimization to approximate the Pareto frontier for the
unrelated machine scheduling problem with uncertain inputs.

In this paper, we present a fuzzy-based priority approach.
Although multi-objective scheduling with “fuzzy” or “good
enough” solutions [25], [26] are known in the Pareto-based ap-
proach, our approach is novel in the online setting, especially
when different objectives have (soft) priorities. In the thermal-
aware scheduling literature, workload placement has been
considered in the presence of nonuniform heat distribution
in datacenter environments [16], [21], but no prior work has

addressed online scheduling for multiple objectives. We also
consider the placement problem for physical machines to
achieve better thermal balance in heterogeneous servers, which
to our best knowledge has not been studied in the past.

III. PROBLEM STATEMENT

A. System Model

Motivated by scheduling high-performance computing ap-
plications in Heterogeneous Server Systems (HSS), we con-
sider the following system model. There is a setM =
{M1, M2, · · · , Mm} of m heterogeneous machines, which
need to be placed inside a server system withm positions
{C1, C2, · · · , Cm} and l outlets{L1, L2, · · · , Ll}. Each ma-
chineMj ∈ M has a static power consumptionUstat

j when it
is idle or not executing any job. A setJ = {J1, J2, · · · , Jn}
of n jobs arrive at the system in an online manner, and each job
Ji ∈ J is characterized by a release timeri, a processing time
Pi,j and a dynamic power consumptionUi,j if it is executed
on machineMj . We study both job scheduling and machine
placement for this model, which are described in the following.

1) Job Scheduling:The jobs are to be scheduled in an
online manner to the machines. That is, each job needs to
be assigned irrevocably to a machine without knowledge of
future job arrivals. Moreover, once a job has been assigned,
no preemption or migration is allowed, which usually incursa
significant cost in terms of data reallocation. The total power
consumption of machineMj at any timet is given by

U tot
j (t) = Ustat

j +

n
∑

i=1

δi,j(t) · Ui,j , (1)

whereδi,j(t) is a binary variable that takes value1 if job Ji is
running on machineMj at timet and0 otherwise. In order to
optimize performance, we restrict that each machine can host
only one job at any time. Thus, we have

∑n

i=1 δi,j(t) ≤ 1 for
all 1 ≤ j ≤ m at all time t.

2) Machine Placement:The set of machines need to be
statically placed in advance to them positions in the server.
Assuming that the cooling of the system gives a steady airflow
pattern inside the server, the heat generated from each position
to each outlet can be described by aheat-distribution matrix
D, where each elementdx,k ∈ D denotes the fraction of the
heat generated from positionCx to outletLk. As some heat
may be dissipated through other channels (such as small holes)
of the server instead of the outlets or even stay in the server
enclosure, we have

∑l

k=1 dx,k ≤ 1 for all 1 ≤ x ≤ m.
This model is general enough to capture the situation of

many heterogeneous server systems, such as those in racks or
clusters of typical datacenters.

B. Scheduling Model

There are two subproblems: First, we need to decide a
static machine placement, that is, to find a mappingπ :
{1, 2, , · · · , m} → {1, 2, , · · · , m} from server positions to
machines so that each positionCx is filled with a machine
Mπ(x). Then, we need anonline job schedulingstrategy to
assign each arriving job to a machine for execution. Assuming
that the power consumption is completely transformed into



heat, the total amount of heat (or power) received by outlet
Lk at time t can be expressed as

Uout
k (t) =

m
∑

x=1

dx,k · U tot
π(x)(t) . (2)

Given a constant temperatureT in at all inlets of the server,
the temperature at outletLk is given by

T out
k (t) = T in + g(Uout

k (t)) , (3)

where functiong(U) converts the amount of heatU (in Watt)
received by the outlet to the increase in its air temperature. In
general, the air temperature is a function of air densityρ (in
kg/m3), airflow throughputQ (in m3/s), and air heat capacity
C (in Joule/(oC · kg)) The following gives an expression of
g(U) in terms of these parameters [21]:

g(U) =
U

ρ · Q · C
. (4)

C. Optimization Objectives

We consider the followingMulti-Objective Optimization
Problem (MOOP): optimizing the performance of the jobs,
minimizing the energy consumption of the machines, and
balancing the temperatures at the server outlets.

For performance, we use the average response timeRave

of the jobs as the metric, and it is defined as

Rave =
1

n

n
∑

i=1

(ci − ri) , (5)

whereci andri denote the completion time and release time
of job Ji, respectively.

The energy consumption can be divided into two parts: (a)
Estat due to the static power consumption of the machines;
and (b)Edync due to the dynamic execution of the jobs, which
is given by

Edync =

n
∑

i=1

m
∑

j=1

δi,j · Pi,j · Ui,j , (6)

whereδi,j = 1 if job Ji is executed on machineMj and 0
otherwise. The total energy consumption is thereforeEtot =
Estat +Edync. In this paper, we assume that all machines are
turned on at all times, so the static energy is independent of
the scheduling of the jobs.

For the thermal imbalance, we use the maximum tempera-
tureT out

max and average temperatureT out
ave at the server outlets as

metrics. Apparently, larger values forT out
max andT out

ave indicate
worse thermal imbalance. These two metrics are specified as

T out
max = max

t1≤t≤t2
max
1≤k≤l

T out
k (t) , (7)

T out
ave =

1

(t2 − t1) · l

∫ t2

t1

l
∑

k=1

T out
k (t)dt , (8)

where[t1, t2] denotes the interval of interest, in which all jobs
arrive and complete their executions.

Due to the heterogeneity of the machines, different job
scheduling and machine placement strategies may result in
very different job response time, dynamic energy and outlet

temperatures. Moreover, these objectives can be conflicting
with each other. In next section, we will propose heuristicsto
address each one of them as well as to deal with their tradeoffs.

D. Motivation for Machine Placement

Many server systems exhibit a non-uniform heat distribution
between the positions and the outlets. Consider a simple server
system with two positions and two outlets. The first position
dissipates 50% of its generated heat to each outlet, whereas
the second position dissipates 80% of the heat to outlet 1
and 20% to outlet 2. Given two heterogeneous machines,
it is obviously more desirable to place the machine with
a larger heat dissipation to the first position, in order to
balance the temperatures at the two outlets and to reduce the
peak temperature. The situation becomes more challenging in
practical server systems with a larger number of positions
and outlets, as well as a more complex spatial correlation
between them. This motivates the study of machine placement
in heterogeneous systems.

IV. STATIC MACHINE PLACEMENT HEURISTIC

In this section, we present a heuristic algorithm for static
machine placement. As mentioned in Section III-D, the place-
ment of machines can have an impact on the thermal balance
at the outlets of a heterogeneous server system. While such an
impact comes from both static and dynamic power consump-
tions of the machines, the dynamic part is not a characteristic
of the machines and can be influenced by the job scheduling
decisions. Hence, we will only use static power consumption
to perform machine placement.1

To obtain the optimal placement of machines based on their
static power is NP-hard, since it can be shown to contain the
3-partition problem [9] as a special case. Therefore, we will
focus on heuristic solutions, and present a Greedy Machine
Placement (GMP) heuristic to reduce the maximum outlet
temperature. Algorithm 1 presents its pseudocode.

First, GMP sorts the machines in descending order of static
power consumption, since machines that consume more power
will have larger contributions to the temperatures at all outlets,
so they will be placed first to avoid high peak temperature
values. LetT out

k denote the existing temperature at outletLk,
and let T out

max(x) denote the maximum outlet temperature if
the next machineMj ∈ M is placed in positionCx, i.e.,

T out
max(x) = max

k=1···l
(T out

k + g(dx,k · Ustat
j )) . (9)

Then, machineMj will be placed in one of the remaining
positionsCx′ ∈ C that minimizes the maximum outlet tem-
perature, i.e.,x′ = argminx T out

max(x). After that, the filled
position Cx′ will be removed from the available setC, and
the temperatures at all outlets will be updated. The algorithm
terminates when all machines inM are placed in the server.

For the complexity of the GMP heuristic, the sorting and
initialization takesO(m log m + l) time. In the iteration,
placing each machine incursO(ml) time as each remaining

1There tends to be a postive correlation between the static power consump-
tion of the machines and their dynamic power. That is, a machine with a
higher static power also consumes a higher dynamic power when executing a
given job. This justifies the use of static power alone for machine placement.



Algorithm 1 Greedy Machine Placement
Input: SetM = {M1, M2, · · · , Mm} of m machines,

setC = {C1, C2, · · · , Cm} of m server positions,
and heat distribution matrixD.

Output: A mappingπ from server positions to machines.
1: Sort the machines in descending order of static power consump-

tions, i.e.,Ustat
1 ≥ Ustat

2 ≥ · · · ≥ Ustat
m

2: Initialize T out
k = 0 for all 1 ≤ k ≤ l

3: for j = 1 to m do
4: x′ = 0 andT out

max(x′) = ∞
5: for eachCx ∈ C do
6: T out

max(x) = maxk=1..l

`

T out
k + g(dx,k · Ustat

j )
´

7: if T out
max(x) < T out

max(x′) then
8: T out

max(x′) = T out
max(x) andx′ = x

9: end if
10: end for
11: Place machineMj to positionCx′ , i.e., π(x′) = j
12: UpdateT out

k = T out
k + g(dx′,k · Ustat

j ) for all 1 ≤ k ≤ l,
and updateC = C \Cx′

13: end for

position is tested to determine the maximum outlet tempera-
ture. Therefore, the overall complexity isO(m2l).

V. ONLINE JOB SCHEDULING HEURISTICS

With a fixed machine placement, we need to perform job
scheduling in an online manner. This section presents heuris-
tics for online job scheduling to optimize various objectives.

A. Greedy Online Scheduling Framework

All of our online scheduling heuristics fall into a Greedy
Online Scheduling (GOS) framework, which is described in
Algorithm 2.

Algorithm 2 Greedy Online Scheduling
Input: Arrival of a new job Ji, and its processing timePi,j and

dynamic power consumptionUi,j if it is executed on any
machineMj ∈ M.

Output: Assignment of jobJi to a machine inM.
1: j′ = 0 andHi,j′ = ∞
2: for j = 1 to m do
3: if Hi,j < Hi,j′ then
4: Hi,j′ = Hi,j and j′ = j
5: end if
6: end for
7: Assign jobJi to machineMj′

Under the GOS framework, any newly arrived job will be
assigned greedily to a machine. The variableHi,j shown in
the algorithm represents the cost of assigning the new job
Ji to machineMj. Depending on the target objective,Hi,j

can be a function of job response time, energy consumption,
outlet temperature, or even a composite or combined function
of these objectives. The job will then be assigned to a machine
Mj′ with the minimum cost, i.e.,j′ = argminj Hi,j . The rest
of this section will describe heuristics that minimize different
cost functions depending on the optimization objectives.

B. Mono-Objective Scheduling

Mono-objective scheduling considers a single optimization
objective when deciding where to assign each job. In this sub-
section, we present three mono-objective scheduling heuristics

that minimize job response time, dynamic energy consumption
and maximum outlet temperature, respectively. The following
describes the three heuristics and their cost functions.

• Fastest: Assign job Ji to a machine that renders the
minimum job response time. The cost function is

HR
i,j = max(ri, t

avail
j ) + Pi,j , (10)

whereri is the release time of jobJi and tavail
j denotes

the latest time when machineMj becomes available.
• Greenest: Assign jobJi to a machine that incurs the min-

imum dynamic energy consumption. The cost function is

HE
i,j = Pi,j · Ui,j . (11)

• Coolest: Assign jobJi to a machine that minimizes the
maximum outlet temperature. The cost function is

HT
i,j = max

k=1···l
(T out

k + g(dj,k · Ui,j)) , (12)

whereT out
k denotes the existing temperature at outletLk

before assigning the job, anddj,k denotes the fraction of
heat contributed from machineMj to outletLk.

C. Multi-Objective Scheduling with a Fuzzy-Based Priority
Approach

To optimize two or more objectives at the same time, we
propose a novelfuzzy-based priorityapproach to perform
online job scheduling.

1) Dual-Objective Scheduling:We first consider optimizing
two objectives, for which we use the following composite cost
function

HX,Y
i,j = 〈HX

i,j(f), HY
i,j〉 . (13)

In this case, the objectivesX and Y are considered one
after another by first selecting all machines that offer the best
performance in terms ofX , and then selecting among this
subset any machine that offers the best performance in terms
of Y . To avoid depriving the second objective altogether, a
fuzzy factorf is used to relax the selection criterion for the
first objective up to an acceptable margin. The purpose of
introducing this factor is to explore any potential improvement
for Y while maintaining the performance forX within the
target range. Figure 1 illustrates the basic principle of this
approach using a simple example. As we can see, the machine
that compromises the first objectiveX up to the specified
fuzzy factor is selected to improve the second objectiveY .
The simple priority approach, on the other hand, would have
scheduled for the bestX with much worseY . The value of
the fuzzy factor as well as the priority should depend on the
relative importance of the two objectives to optimize, which
can be set by the user or the system administrator.

To implement fuzzy-based priority in the GOS framework as
shown in Algorithm 2, the cost function for the first objective
X is normalized between 0 and 1 in order to take the fuzzy
factor into account, i.e.,

HX
i,j =

HX
i,j − HX

i,min

HX
i,max − HX

i,min

, (14)

whereHX
i,min andHX

i,max denote the minimum and maximum
costs in terms of objectiveX among all machines to assign



X

Y

Selected by fuzzy-based 
priority approach

Acceptable range for objective X 
with a fuzzy factorf

Selected by simple 
priority approach 

Fig. 1. The fuzzy-based priority approach in dual-objective scheduling.

job Ji. The following rule compares the relative costs of any
two machines.

Fuzzy-Based Priority Rule: The costs incurred by schedul-
ing job Ji on any two machinesMj1 andMj2 satisfyHX,Y

i,j1
<

HX,Y
i,j2

if one of the following conditions holds:

• HX
i,j1

≤ f < HX
i,j2

, or

• HX
i,j1

≤ f andHX
i,j2

≤ f andHY
i,j1

< HY
i,j2

, or

• HX
i,j1

< HX
i,j2

≤ f andHY
i,j1

= HY
i,j2

, or

• f < HX
i,j1

< HX
i,j2

, or

• f < HX
i,j1

= HX
i,j2

andHY
i,j1

< HY
i,j2

.

This rule can be applied to optimize any two objectives
with well-defined cost functions, such as the ones given in
Equations (10)-(12) for job response time, energy consumption
and maximum outlet temperature, respectively.

2) Multi-Objective Scheduling:With more than two ob-
jectives, we can take a similar approach of optimizing one
objective after another, but with combined cost functions that
consist of two or more objectives. For instance, theweighted
sum method can be used to combine job response time and
energy consumption to form a single objective, i.e.,

HRE
i,j = αHR

i,j + (1 − α)HE
i,j , (15)

whereα ∈ [0, 1] denotes the relative weight assigned to job
response time. Note that the cost functions for both objectives
are normalized between 0 and 1 to form meaningful com-
bination. Then, to optimize the maximum outlet temperature
with the combined cost (of job response time and energy
consumption), the following composite cost function can be
constructed

HT,RE
i,j = 〈HT

i,j(f), HRE
i,j 〉 , (16)

or conversely

HRE,T
i,j = 〈HRE

i,j (f), HT
i,j〉 . (17)

In the case where the first objective is a combination of
two or more objectives as in Equation (17), the combined cost
needs again to be normalized to take into account the fuzzy
factor, i.e.,

HRE
i,j =

HRE
i,j − HRE

i,min

HRE
i,max − HRE

i,min

. (18)

The fuzzy-based priority rule described previously can then
be applied in the same way as before. The exact priori-

ties/weights among different objectives and the fuzzy factor
again depend on their relative importance.

VI. PERFORMANCEEVALUATIONS

In this section, we will evaluate the proposed machine
placement and job scheduling heuristics. The evaluations are
performed using the DCworms simulator [14] developed for
modeling and simulating performance, power and thermal
behaviors of server systems in datacenters.

A. Server Platform

Our modeled platform is based on Christmann’sResource
Efficient Cluster Server (RECS)[4], which is a 1U multi-server
system consisting of 18 heterogeneous computing nodes with
integrated cooling support. The built-in power and temperature
sensors allow the hardware and the application profiles to
be monitored and modeled with fine granularity and high
accuracy. This system represents an emerging class of high-
density servers, which allows a significant number of them to
be integrated in just a few rack units. While the RECS platform
is chosen to conduct our experiments, our proposed models
and heuristics can be generally applied to other heterogeneous
servers at both cluster and datacenter environments.

Our heterogeneous RECS server consists of 8 nodes of Intel
i7-2715QE, 4 nodes of Intel Atom D510 and 6 nodes of AMD
G-T40N. Table I describes the detailed hardware configuration.
The 18 positions of the server are laid out in two rows, as
depicted in Figure 2, where two positions along the same
column share a pair of inlet and outlet, with airflow drawn
by fans directly attached to them.

TABLE I
HARDWARE CONFIGURATION OF THERECSSERVER.

Intel Core Intel Atom AMD
i7-2715QE D510 G-T40N

Frequency 2.1GHz 1.66GHz 1GHz
Static power 11.5W 9W 6.4W

#Cores (#Threads) 4(8) 2(4) 2(2)
RAM 16GB 2GB 4GB
Cache 6MB 1MB 1MB

Node count 8 4 6

C1 C2 C3 C9

C10 C11 C12 C18

Inlets

Outlets

Fans

Fans

L1 L2 L3 L9

. . .    . . . 

. . .    . . . 

Fig. 2. The layout of the RECS server system.

For simulation purpose, the temperature at all inlets is fixed
at T in = 25oC. The thermodynamic constants are set to
be ρ = 1.168kg/m3 and C = 1004Joule/(oC · kg). With
all fans turned on, the air throughput at each inlet/outlet is
around Q = 0.0055m3/s, according to the measurements



performed in [24]. Simple profiling of the hardware also gives
the following heat-distribution matrix:

dx,k =











1, if x = k

0.84, if x = k + 9

0, otherwise

,

which suggests that each inlet node contributes only 84%
of the generated heat to the corresponding outlet due to the
relatively long heat dissipation path. The remaining heat stays
in or is dissipated through other directions of the server
enclosure, which is hard to measure.

B. HPC Benchmarks and Workload

For the simulation, we adopt the set of HPC benchmarks
used in [14], which consist of the following applications: fft,
c-ray, abinit, linpack, and tar. In particular, an application-
specific approach was employed to build the performance
and power profiles of these applications with different input
parameters and number of threads. Table II shows the average
execution time and dynamic power consumption of each ap-
plication on the three types of computing nodes. The exclusive
execution mode (i.e., running one job per node) was used to
ensure accurate measurements of the application profiles. Lack
of values in the table means that the particular application
could not be executed on the corresponding node. Therefore,
the node is ignored by the online scheduling heuristics for
assigning that application.

TABLE II
AVERAGE EXECUTION TIME AND DYNAMIC POWER CONSUMPTION OF THE

BENCHMARKS.

Intel Core Intel Atom AMD
i7-2715QE D510 G-T40N

fft 1375s, 11.5W 6040s, 0.75W 7710s, 2.58W
c-ray 1445s, 11.79W 8445s, 0.84W 9650s, 2.16W
abinit 4388s, 22.52W - -

linpack 1360s, 18.30W 20130s, 2.20W -
tar 6400s, 9.83W 23385s, 1.79W 22900s, 3.08W

The simulation workload consists of 1000 jobs, and each
job is randomly selected from one of these benchmarks. The
jobs arrive at the system according to the Poisson process. The
load intensityρ is proportional to the average arrival rateλ
(in number of jobs per hour), and it is given byρ = λ/10.

C. Simulation Results

We apply the greedy heuristic presented in Section IV to
generate a machine placement for the RECS server system,
which will be used throughout this section for evaluating
different scheduling heuristics. In Section VI-C4, we willcome
back to machine placement and compare our heuristic with
two alternative placements for evaluating the impact on outlet
temperatures. All results are obtained by carrying out the
experiments 10 times and taking the average.

1) Performance of Mono-Objective Heuristics:We first
evaluate the three mono-objective scheduling heuristics pre-
sented in Section V-B. Their performance will be used as ref-
erences for exploring the tradeoffs of two or more objectives.

Two versions of the three heuristics are implemented. One
considers only the available or idle machines when assigning
each job, and in case all machines are busy the assignment will
be postponed until some machine becomes available. The other
version considers all machines and therefore may possibly
reserve a future time slot of a machine for the job in advance.
We call the two versions “available” and “all”, respectively.
They are compared with two other scheduling policies, namely
RandomandRoundRobin. The former assigns each job to an
available machine randomly, and the latter selects the machines
in turn for assigning the jobs. Both policies are commonly used
for balancing the machine loads.

Figures 3 and 4 present the simulation results of the two
versions. The results show that the three heuristics (Fastest,
Greenestand Coolest) achieve the best performance with
respect to their target objective functions. For the “available”
heuristics as shown in Figure 3, the performance gains under
light loads are up to 40-60% for average job response time,
around 15% for dynamic energy consumption, and 1.4-1.6oC
for maximum outlet temperature. The advantages diminish
slowly as the load intensity increases, as the utilization of the
computing nodes becomes higher, so jobs tend to be postponed
or assigned to nodes with less energy or thermal efficiency.
For the average outlet temperature, all heuristics have similar
performance exceptRoundRobin, which performs better at
medium to high loads at the expense of job response time
and energy consumption.

For the performance of the “all” heuristics, by comparing
Figures 3(a) and 4(a), we can see that the average job response
time becomes worse by at least an order of magnitude. (Note
the difference in scale.) Since all machines are consideredin
this case, a subset of them is almost always selected for their
energy and thermal efficiency, resulting in highly unbalanced
machine loads and hence deterioration of job response times.
For the same reason, the advantages ofGreenestandCoolest
in terms of dynamic energy consumption and maximum outlet
temperature are maintained even at high load intensities.
In particular for Greenest, all jobs are concentrated on the
most energy-efficient nodes (e.g., Intel Atom) while the other
machines with low power efficiency but high performance
(e.g., Intel Core i7) are left idle. Naturally, it leads to the
lowest average outlet temperature for this heuristic.

For theFastestheuristic, Figure 5 shows that the “available”
version, which implicitly balances the utilization of the com-
puting resources, outperforms the “all” version in terms ofthe
jobs’ average response time at high loads. The “all” version,
on the other hand, performs better in terms of the maximum
response time of all jobs, since it makes the best local decision
for each individual job regardless of the machine availability.

In the rest of this section, we will focus on the “available”
heuristics to study the tradeoffs of various objectives andthe
impact of different machine placements.

2) Impact of Fuzzy Factor for Dual-Objective Scheduling:
We now evaluate the effectiveness of the fuzzy-based priority
approach for exploring the tradeoffs between two objectives.
For this purpose, we consider three cost functions defined in
Equations (10)-(12), for minimizing average job response time,
dynamic energy consumption and maximum outlet tempera-
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Fig. 3. Performance of the “available” version of the three mono-objective scheduling heuristics withRandomandRoundRobin.
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Fig. 4. Performance of the “all” version of the three mono-objective scheduling heuristics withRandomandRoundRobin.
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Fig. 5. Comparison of the two versions of theFastestheuristic in terms of
average and maximum job response time.

ture, respectively.
Figure 6 shows the impact of varying the fuzzy factorf

from −1 to 1 when minimizing any two out of the three
objectives at 20% load intensity. In particular,f = −1
means that the scheduling decision is solely based on the
first objective. In this case, ties on the first cost function
are broken randomly, so the second objective is completely
ignored. Figures 6(a), 6(e) and 6(i) along the diagonal show
the optimization of two identical objectives, which make them
equivalent to the mono-objective case. The other figures plot
the changes of the two objectives as a function off , with the
first objective shown on the leftY axis and the second one on
the rightY axis.

First, Figures 6(b) and 6(d) indicate no change to the aver-
age response time and dynamic energy consumption unless the
fuzzy factorf is set above 0.7 forHR,E

i,j and 0.5 forHE,R
i,j .

The results suggest that it is difficult to have good performance
for one objective without significant performance degradation
for the other. Depending on the relative importance of the two
objectives, the fuzzy factor in this case can be set in the range
of [0.6, 0.9] to obtain a desirable tradeoff.

Figures 6(c) and 6(f) show that the maximum outlet temper-
ature can be minimized simultaneously with average response
time or dynamic energy consumption as soon as the second
objective (temperature) is taken into account, i.e.,f ≥ 0,
and before the first objective (response time or energy) is
compromised, i.e.,f ≤ 0.6. Similar results can be observed in
Figures 6(g) and 6(h), which optimize the temperature before
response time or energy consumption. In this case, the second
objective stabilizes afterf reaches0.3, and interestingly, the
first objective (temperature) is also reduced slightly (by 0.1-
0.2oC) due to the consideration of the second objective. The
improvement is probably due to the perturbation introducedin
the scheduling decision that helped escape the local optimum,
which was experienced by considering temperature alone. In
general for optimizing response time or energy with maximum
outlet temperature, the fuzzy factor can be set in the range of
[0.3, 0.6] for the optimal performance.

Figure 7 shows the results when the load intensity is at 40%.
As can be seen, by setting appropriate values for the fuzzy
factor, desirable tradeoffs between average response timeand
dynamic energy can again be attained. Temperature can also be
optimized together with the other two objectives, but stablizes
at a higher value due to the increase of load intensity. The
results demonstrate the effectiveness of this fuzzy-basedap-
proach for exploring and optimizing dual-objective tradeoffs.

3) Results of Multi-objective Scheduling:We use average
response time, dynamic energy consumption and maximum
outlet temperature as the three objectives to evaluate the
performance of multi-objective scheduling.

Previous results on dual-objective scheduling have shown
the difficulty of minimizing response time and energy si-
multaneously. Hence, we combine the two objectives with
a weighted cost functionHRE

i,j as defined in Equation (15),
and optimize it together with temperature using the composite



−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
2000

4000

6000

8000

10000

12000

T
im

e 
(s

ec
s)

fuzzy factor f

HR
i,j

 

 

Average Response Time

(a)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
2000

4000

6000

8000

10000

12000

T
im

e 
(s

ec
s)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
ne

rg
y 

(W
h)

HR,E
i,j = 〈H R

i,j(f), HE
i,j〉

(b)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
2000

4000

6000

8000

10000

12000

T
im

e 
(s

ec
s)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

31.5

32

32.5

33

33.5

34

T
em

pe
ra

tu
re

 (
 o C

)

HR,T
i,j = 〈H R

i,j(f), HT
i,j〉

(c)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
ne

rg
y 

(W
h)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

2000

4000

6000

8000

10000

12000

T
im

e 
(s

ec
s)

HE,R
i,j = 〈H E

i,j(f), HR
i,j〉

(d)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
ne

rg
y 

(W
h)

fuzzy factor f

HE
i,j

 

 

Dynamic Energy Consumption

(e)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
ne

rg
y 

(W
h)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

31.5

32

32.5

33

33.5

34

T
em

pe
ra

tu
re

 (
 o C

)

HE,T
i,j = 〈H E

i,j(f), HT
i,j〉

(f)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
31.5

32

32.5

33

33.5

34

T
em

pe
ra

tu
re

 (
 o C

)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

2000

4000

6000

8000

10000

12000

T
im

e 
(s

ec
s)

HT,R
i,j = 〈H T

i,j(f), HR
i,j〉

(g)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
31.5

32

32.5

33

33.5

34

T
em

pe
ra

tu
re

 (
 o C

)

fuzzy factor f
−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

4

E
ne

rg
y 

(W
h)

HT,E
i,j = 〈H T

i,j(f), HE
i,j〉

(h)

−1  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  1 
31.5

32

32.5

33

33.5

34

T
em

pe
ra

tu
re

 (
 o C

)

fuzzy factor f

HT
i,j

 

 

Maximum Outlet Temperature

(i)

Fig. 6. The use of fuzzy-based priority approach for dual-objective scheduling at 20% load intensity. The subfigures on the diagonal show the reference
values for average response time, dynamic energy consumption and maximum outlet temperature, respectively. The legends therein apply to all the subfigures.

functions HT,RE
i,j and HRE,T

i,j as defined in Equations (16)
and (17). Since similar performance was observed for the two
cases, we only present the results forHT,RE

i,j .

Figure 8 shows the results with different values ofα andf
at 20% load intensity. First, asα increases from 0 to 1 in the
weighted sum, we can clearly see the performance transitions
for both response time and energy consumption as long as they
are considered, i.e.,f 6= −1. When the value ofα is large,
indicating that response time is favored more than energy, the
response time is reduced asf increases. The same can be
observed for energy consumption when the value ofα is small.
This demonstrates the effectiveness of usingf in exploring the
potential performance improvements for combined objectives.
Figure 8(c) shows that the maximum outlet temperature can
again be slightly improved by considering the response time
and energy as the second objective, which also correspond to
the results shown in Figures 6(g) and 6(h).

Figure 9 shows the performance of the algorithm with fixed
f = 0.4 and α = 0.5. We call the resulting algorithm
Combinedand compare it with the three reference heuristics.
The results show a good tradeoff between average response
time and dynamic energy consumption under all system loads,
using Fastestand Greenestas the references. Moreover, this
is achieved together with good maximum outlet temperature,
which is close to the one obtained by theCoolestheuristic.

4) Impact of Different Machine Placements:Lastly, we
study the impact of machine placement on the performance
of the online scheduling heuristics. To this end, we generate
three different placements of the machines, one by our GMP
heuristic and two by its variants which we call MP2 and MP3,
respectively. The two variants work in a similar fashion as
GMP. However, MP2 sorts the machines in ascending order
of static power instead of descending order, while MP3 assigns
each machine to a remaining position that maximizes the max-
imum outlet temperature instead of minimizing it. Apparently,
MP2 and MP3 are counter-intuitive, so they may not generate
desirable machine configrations. They are included to simply
demonstrate the impact of different machine placements on
the performance, especially the outlet temperature.

Figure 10 shows the performance of the three machine
placements for the same scheduling heuristic that optimizes the
combined cost functionHRE,T

i,j with f = 0.1 and α = 0.4.
The results clearly show that job response time and energy
consumption are not affected by different machine placements.
However, our GMP heuristic reduces the maximum outlet tem-
perature by1oC compared to MP2, and depending on the load
of the system the improvement is up to 3oC compared to MP3.
Moreover, GMP also improves the average outlet temperature
by around 0.1-0.2oC, especially at high system loads. Similar
performance was also observed for other scheduling heuristics.
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Fig. 7. The use of fuzzy-based priority approach for dual-objective scheduling at 40% load intensity. The subfigures on the diagonal show the reference
values for average response time, dynamic energy consumption and maximum outlet temperature, respectively. The legends therein apply to all the subfigures.
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Fig. 8. Multi-objective scheduling forHT,RE
i,j

= 〈H T
i,j(f), αH R

i,j + (1 − α)H E
i,j〉 with different f andα at 20% load intensity.

The results confirm that machine placement indeed affects the
thermal balance at the server outlets, which directly impacts
the efficiency and cost of the cooling system.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have considered online job scheduling and
static machine placement for heterogeneous server systems.
We applied a novel fuzzy-based priority approach to a greedy
online scheduling framework for simultaneously optimizing
multiple objectives, including average job response time,dy-
namic energy consumption and maximum outlet temperature.
Simulations based on a high-density server system have shown
that optimizing only one objective can have a negative impact
on the others. The results also demonstrated the effectiveness

of our approach for exploring and optimizing the tradeoffs
between two or more objectives. In particular, response time
and energy were shown to be orthogonal metrics, which are
difficult to minimize simultaneously. However, either of them
or a weighted combination can be optimized together with
outlet temperature by setting appropriate fuzzy factors. Finally,
different machine placements were shown to have a strong
impact on the thermal balance at the server outlets, which has
implications for the cost of the cooling system.

For future work, we will apply power management tech-
niques, such as DVS or turning off idle machines, to reduce
the static power consumption for better energy and thermal
efficiency. For machine placement, Computational Fluid Dy-
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Fig. 9. Multi-objective scheduling forHT,RE
i,j = 〈H T

i,j(f), αH R
i,j + (1 − α)H E

i,j〉 with f = 0.4 andα = 0.5 at different load intensities.
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Fig. 10. Scheduling forHRE,T
i,j = 〈H RE

i,j (f), αH R
i,j + (1 − α)H E

i,j〉 with f = 0.1 andα = 0.4 under three different machine placements.

namics (CFD) simulations can be carried out to validate the
results. Finally, the approach presented in this paper can be
extended to scheduling multiple servers in a datacenter by
directly considering the cooling cost.
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