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Détection et correction des erreurs silencieuses dans les
applications de calcul scientifique à haute performance

Résumé : Nous décrivons dans ce rapport un modèle unifié pour la détection et la correc-
tion des erreurs silencieuses dans les applications de calcul scientifique à haute performance.
Nous proposons d’abord une méthode générale à base de schémas de calcul périodiques qui
combinent checkpoints et vérifications. Puis nous traitons de deux cas particuliers, à savoir
les châınes de tâches et les solveurs linéaires creux.

Mots-clés : résilience, erreurs silencieuses, checkpoint, ABFT, produit matrice-vecteur
creux.
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TimeXs Xd

Error
Detection

Figure 1: Error and detection latency.

1 Introduction

For High-Performance Computing (HPC) applications, scale is a major opportunity. Massive
parallelism with 100,000+ nodes is the most viable path to achieving sustained petascale per-
formance. Future platforms will exploit even more computing resources to enter the exascale
era.

Unfortunately, scale is also a major threat, because resilience becomes a key challenge.
Even if each node provides an individual MTBF (Mean Time Between Failures) of, say, one
century, a machine with 100,000 such nodes encounters on average a failure every 9 hours,
an interval much shorter than the execution time of many HPC applications. Note that (i)
a one-century MTBF per node is an optimistic figure, given that each node features several
hundreds of cores; and (ii) in some scenarios for the path to exascale computing [15], one
envisions platforms including up to one million such nodes, whose MTBF will decrease to 52
minutes.

Several kinds of errors need to be considered when computing at scale. In the recent
years, the HPC community has traditionally focused on fail-stop errors, such as hardware
failures. The de facto general-purpose technique to recover from fail-stop errors is check-
point/restart [11, 17]. This technique employs checkpoints to periodically save the state of
a parallel application, so that when an error strikes some process, the application can be
restored into one of its former states. There are several families of checkpointing protocols,
but they share a common feature: each checkpoint forms a consistent recovery line, i.e., when
an error is detected, one can rollback to the last checkpoint and resume execution, after a
downtime and a recovery time. Many models are available to understand the behavior of the
checkpointing and restarting techniques [8, 14, 31, 37].

While the picture is quite clear for fail-stop errors, the community has yet to devise an
efficient approach to cope with silent errors, primary source of silent data corruptions. Such
errors must also be accounted for when executing HPC applications [28, 30, 39, 40, 41]. They
may be caused, for instance, by soft errors in L1 cache, arithmetic errors in the ALU, or
bit flips due to cosmic radiation. The main issue is that the impact of silent errors is not
immediate, since they do not manifest themselves until the corrupted data impact the result
of the computation (see Figure 1), leading to a failure. If an error striking before the last
checkpoint is detected after that checkpoint, then the checkpoint is corrupted, and cannot be
used to restore the application. If only fail-stop failures are considered, a checkpoint cannot
contain a corrupted state, because a process subject to failure cannot create a checkpoint
or participate to the application: failures are naturally contained to failed processes. When
dealing with silent errors, however, faults can propagate to other processes and checkpoints,
because processes continue to participate and follow the protocol during the interval that
separates the occurrence of the error from its detection.

In Figure 1, Xs and Xd are random variables that represent the time until the next
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silent error and its detection latency, respectively. We usually assume that silent errors
strike according to a Poisson process of parameter λ, so that Xs has the distribution of an
exponential law of parameter λ and mean 1/λ. On the contrary, it is very hard to make
assumptions on the distribution of Xd. To alleviate the problem of detection latency, one
may envision to keep several checkpoints in memory, and to restore the application from the
last valid checkpoint, thereby rolling back to the last correct state of the application [25].
This multiple-checkpoint approach has three major drawbacks. First, it is demanding in
terms of storage: each checkpoint typically represents a copy of the entire memory footprint
of the application, which may well correspond to several terabytes. The second drawback is
the possibility of fatal failures. Indeed, if we keep k checkpoints in memory, the approach
requires that the last checkpoint still kept in memory to precede the instant when the error
currently detected struck. Otherwise, all live checkpoints would be corrupted, and one would
have to re-execute the entire application from scratch. The probability of a fatal failure for
various error distribution laws and values of k can be evaluated [1]. The third and most serious
drawback of this approach applies even without memory constraints, i.e., if we could store an
infinite number of checkpoints in memory. The critical point is to determine which checkpoint
is the last valid one, information which is necessary to recover from a valid application state.
However, because of the detection latency (which is unknown), we do not know when the
silent error has indeed occurred, hence we cannot identify the last valid checkpoint, unless
some verification mechanism is enforced.

We introduce such verification mechanisms in this chapter. In Section 2, we discuss sev-
eral approaches to validation (recomputation, checksums, coherence tests, orthogonalization
checks, etc). Then in Section 3 we adopt a general-purpose approach, which is agnostic of
the nature of the verification mechanism. We consider a divisible-load application (which
means that we can take checkpoints at any instant), and we partition the execution into
computational patterns that repeat over time. The simplest pattern is represented by a work
chunk followed by a verified checkpoint, which corresponds to performing a verification just
before taking each checkpoint. If the verification succeeds, then one can safely store the
checkpoint. If the verification fails, then a silent error has struck since the last checkpoint,
and one can safely recover from it to resume the execution of the application. We compute
the optimal length of the work chunk in the simplest pattern in Section 3.1, which amounts
to revisiting Young and Daly’s formula [37, 14] for silent errors. While taking a checkpoint
without verification seems a bad idea (because of the memory cost, and of the risk of saving
corrupted data), a validation step not immediately followed by a checkpoint may be interest-
ing. Indeed, if silent errors are frequent enough, verifying the data in between two (verified)
checkpoints, will reduce in expectation the detection latency and thus the amount of work to
be re-executed due to possible silent errors. The major goal of Section 3 is to determine the
best pattern composed of m work chunks, where each chunk is followed by a verification and
the last chunk is followed by a verified checkpoint. We show how to determine m and the
length of each chunk so as to minimize the makespan, that is the total execution time.

Then we move to application workflows. In Section 4, we consider application workflows
that consist of a number of parallel tasks that execute on a platform, and that exchange data
at the end of their execution. In other words, the task graph is a linear chain, and each task
(except maybe the first and the last one) reads data from its predecessor and produces data for
its successor. This scenario corresponds to a high-performance computing application whose
workflow is partitioned into a succession of (typically large) tightly-coupled computational
kernels, each of them being identified as a task by the model. At the end of each task, we
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can either perform a verification on the task output, or perform a verification followed by a
checkpoint. We provide dynamic programming algorithms to determine the optimal locations
of checkpoints and verifications.

The last technique that we illustrate is application-specific. In Section 5, we deal with
sparse linear algebra kernels, and we show how to combine ABFT (Algorithm Based Fault
Tolerance) with checkpointing. In a nutshell, ABFT consists in adding checksums to appli-
cation data, and to view them as extended data items. The application performs the same
computational updates on the original data and on the checksums, thereby avoiding the need
to recompute the checksums after each update. The salient feature of this approach is for-
ward recovery : ABFT is used both as an error verification and error correction mechanism:
whenever a single error strikes, it can be corrected via ABFT and there is no need to rollback
for recovery. Finally, we outline main conclusions and directions for future work in Section 6.

2 Verification mechanisms

Considerable efforts have been directed at error-checking to reveal silent errors. Error detec-
tion is usually very costly. Hardware mechanisms, such as ECC memory, can detect and even
correct a fraction of errors, but in practice they are complemented with software techniques.
General-purpose techniques are based on replication [18, 21, 34, 38]. Indeed, performing the
operation twice and comparing the results of the replicas makes it possible to detect a single
silent error. With Triple Modular Redundancy [26] (TMR) , errors can also be corrected by
means of a voting scheme. Another approach, proposed by Moody et al. [29], is based on
checkpointing and replication and enables detection and fast recovery of applications from
both silent errors and hard errors.

Coming back to verification mechanisms, application-specific information can be help-
ful in designing ad hoc solutions, which can dramatically decrease the cost of detection.
Many techniques have been advocated. They include memory scrubbing [24], but also ABFT
techniques [7, 23, 35], such as coding for the SpMxV (Sparse Matrix-Vector multiplication)
kernel [35], and coupling a higher-order with a lower-order scheme for Ordinary Differential
Equations [6]. These methods can only detect an error but not correct it. Self-stabilizing
corrections after error detection in the conjugate gradient method are investigated by Sao
and Vuduc [33]. Also, Heroux and Hoemmen [22] design a fault-tolerant GMRES algorithm
capable of converging despite silent errors, and Bronevetsky and de Supinski [9] provide a
comparative study of detection cost for iterative methods. Elliot et al. [16] combine partial
redundancy and checkpointing, and confirm the benefit of dual and triple redundancy. The
drawback is that twice the number of processing resources is required (for dual redundancy).

A nice instantiation of the checkpoint and verification mechanism that we study in this
chapter is provided by Chen [12], who deals with sparse iterative solvers. Consider a simple
method such as the Preconditioned Conjugate Gradient (PCG) method: Chen’s approach
performs a periodic verification every d iterations, and a periodic checkpoint every d × c
iterations, which is a particular case, with equi-spaced validations, of the approach presented
later in Section 3.2. For PCG, the verification amounts to checking the orthogonality of two
vectors and to recomputing and checking the residual. The cost of the verification is small
if compared to the cost of an iteration, especially when the preconditioner requires many
more flops than a SpMxV. As already mentioned, the approach presented in Section 3 is
agnostic of the underlying error-detection technique and takes the cost of verification as an
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input parameter to the model.

3 Patterns for divisible load applications

In this section we explain how to derive the optimal pattern of interleaving checkpoints and
verifications. An extended presentation of the results is available in [2, 4, 10].

3.1 Revisiting Young and Daly’s formula

Consider a divisible-load application, i.e., a (parallel) job that can be interrupted at any
time for checkpointing, for a nominal cost C. To deal with fail-stop failures, the execution
is partitioned into same-size chunks followed by a checkpoint, and there exist well-known
formulae by Young [37] and Daly [14] to determine the optimal checkpointing period.

To deal with silent errors, the simplest protocol (see Figure 2) would be to perform a
verification (at a cost V ) just before taking each checkpoint. If the verification succeeds, then
one can safely store the checkpoint and mark it as valid. If the verification fails, then an
error has struck since the last checkpoint, which is correct having been verified, and one can
safely recover (which takes a time R) from that checkpoint to resume the execution of the
application. This protocol with verifications zeroes out the risk of fatal errors that would
force to restart the execution from scratch.

Time

V C W V C W V C (Without error)

Time

V C W V R W V C W V C

Error
Detection

(With error)

Figure 2: The simplest pattern: a work chunk W followed by a verification V and a checkpoint
C.

To compute the optimal length of the work chunk W ∗, we first have to define the objective
function. The aim is to find a pattern P (with a work chunk of length W followed by a
verification of length V and a checkpoint of length C) that minimizes the expected execution
time of the application. Let Wbase denote the base execution time of an application without
any overhead due to resilience techniques (without loss of generality, we assume unit-speed
execution). The execution is divided into periodic patterns, as shown in Figure 2. Let E(P)
be the expected execution time of the pattern. For large jobs, the expected makespan Wfinal

of the application when taking failures into account can then be approximated by

Wfinal ≈
E(P)

W
×Wbase = Wbase +H(P) ·Wbase

where

H(P) =
E(P)

W
− 1
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is the expected overhead of the pattern. Thus, minimizing the expected makespan is equiv-
alent to minimizing the pattern overhead H(P). Hence, we focus on minimizing the pattern
overhead. We assume that silent errors are independent and follow a Poisson process with
arrival rate λ. The probability of having at least a silent error during a computation of length
w is given by p = 1 − e−λw. We assume that errors cannot strike during recovery and ver-
ification. The following proposition shows the expected execution time of a pattern with a
fixed work length W .

Proposition 1. The expected execution time of a pattern P with work length W is

E(P) = W + V + C + λW 2 + λW (V +R) +O(λ2W 3) . (1)

Proof. Let p = 1 − e−λW denote the probability of having at least one silent error in the
pattern. The expected execution time obeys the recursive formula

E(P) = W + V + p(R+ E(P)) + (1− p)C . (2)

Equation (2) can be interpreted as follows: we always execute the work chunk and run the
verification to detect silent errors, whose occurrence requires not only a recovery but also a
re-execution of the whole pattern. Otherwise, if no silent error strikes, we can proceed with
the checkpoint. Solving the recursion in Equation (2), we obtain

E(P) = eλW (W + V ) +
(
eλW − 1

)
R+ C .

By approximating eλx = 1 + λx+ λ2x2

2 up to the second-order term, we can further simplify
the expected execution time and obtain Equation (1).

The following theorem gives a first-order approximation to the optimal work length of a
pattern.

Theorem 1. A first-order approximation to the optimal work length W ∗ is given by

W ∗ =

√
V + C

λ
. (3)

The optimal expected overhead is

H∗(P) = 2
√
λ(V + C) +O(λ) . (4)

Proof. From the result of Proposition 1, the expected overhead of the pattern can be computed
as

H(P) =
V + C

W
+ λW + λ(V +R) +O(λ2W 2) . (5)

Assume that the MTBF of the platform µ = 1/λ is large if compared to the resilience
parameters. Then consider the first two terms of H(P) in Equation (5): the overhead is
minimal when the pattern has length W = Θ(λ−1/2), and in that case both terms are in the
order of λ1/2, so that we have

H(P) = Θ(λ1/2) +O(λ).

Indeed, the last term O(λ) becomes also negligible when compared to Θ(λ1/2). Hence, the
optimal pattern length W ∗ can be obtained by balancing the first two terms in Equation (5),
which gives Equation (3). Then, by substituting W ∗ back into H(P), we get the optimal
expected overhead in Equation (4).
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We observe from Theorem 1 that the optimal work length W ∗ of a pattern is in Θ
(
λ−1/2

)
,

and the optimal overhead H∗(P) is in Θ(λ1/2). This allows us to express the expected
execution overhead of a pattern as H(P) = oef

W + orwW +O(λ), where oef and orw are two key
parameters that characterize two different types of overheads in the execution, and they are
defined below.

Definition 1. For a given pattern, oef denotes the error-free overhead due to the resilience
operations (e.g., verification, checkpointing), and orw denotes the re-executed work overhead,
in terms of the fraction of re-executed work due to errors.

In the simple pattern we analyze above, these two overheads are given by oef = V + C
and orw = λ, respectively. The optimal pattern length and the optimal expected overhead
can thus be expressed as

W ∗ =

√
oef

orw
,

H∗(P) = 2
√
oef · orw +O(λ) .

We see that minimizing the expected execution overhead H(P) of a pattern becomes equiv-
alent to minimizing the product oef × orw up to the dominating term. Intuitively, including
more resilient operations reduces the re-executed work overhead but adversely increases the
error-free overhead, and vice versa. This requires a resilience protocol that finds the optimal
tradeoff between oef and orw. We make use of this observation in the next section to derive
the optimal pattern in a more complicated protocol where patterns are allowed to include
several chunks.

3.2 Optimal pattern

If the verification cost is small when compared to the checkpoint cost, there is room for opti-
mization. Consider the pattern illustrated in Figure 3 with three verifications per checkpoint.
There are three chunks of size w1, w2, and w3, each followed by a verification. Every third
verification is followed by a checkpoint.

Time

V C w1 V w2 V w3 V C (Without error)

Time

V C w1 V w2 V R w1 V w2 V w3 V C

Error
Detection

(With error)

Figure 3: Pattern with three verifications per checkpoint.

To understand the advantages of such a pattern, assume w1 = w2 = w3 = W/3 for now,
so that the total amount of work is the same as in the simplest pattern. As before, a single
checkpoint needs to be kept in memory, and each error leads to re-executing the work since
the last checkpoint. But detection occurs much more rapidly in the new pattern, because
of the intermediate verifications. If the error strikes during the first of the three chunks, it
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is detected by the first verification, and only the first chunk is re-executed. Similarly, if the
error strikes the execution of the second chunk (as illustrated in the figure), it is detected by
the second verification, and the first two chunks are re-executed. The entire frame of work
needs to be re-executed only if the error strikes during the third chunk. Under the first-order
approximation as in the analysis of Theorem 1, the average amount of work to re-execute is
(1+2+3)w/3 = 2w = 2W/3, that is, the re-executed work overhead becomes orw = 2λ/3. On
the contrary, in the first pattern of Figure 2, the amount of work to re-execute is always W ,
because the error is never detected before the end of the pattern. Hence, the second pattern
leads to a 33% gain in the re-execution time. However, this comes at the price of three times
as many verifications, that is, the error-free overhead becomes oef = 3V + C. This overhead
is paid in every error-free execution, and may be an overkill if the verification mechanism is
too costly.

This example shows that finding the best trade-off between error-free overhead (what is
paid due to the resilience method, when there is no failure during execution) and execution
time (when errors strike) is not a trivial task. The optimization problem can be stated as
follows: given the cost of checkpointing C, recovery R, and verification V , what is the optimal
pattern to minimize the (expectation of the) execution time? A pattern is composed of several
work chunks, each followed by a verification, and the last chunk is always followed by both
a verification and a checkpoint. Let m denote the number of chunks in the pattern, and
let wj denote the length of the j-th chunk for 1 ≤ j ≤ m. Let W =

∑m
j=1wj . We define

βj = wj/W be the relative length of the j-th chunk so that βj ≥ 0 and
∑m

j=1 βj = 1. We
let βββ = [β1, β2, . . . , βm]. The goal is to determine the pattern work length W , the number of
chunks m as well as the relative length vector βββ.

Proposition 2. The expected execution time of the above pattern is

E(P) = W +mV + C +
(
λβββTAβββ

)
W 2 +O(

√
λ) , (6)

where A is an m × m matrix whose diagonal coefficients are equal to 1 and whose other
coefficients are all equal to 1

2 .

Proof. Let pj = 1− e−λwj denote the probability of having at least one silent error in chunk
j. To derive the expected execution time of the pattern, we need to know the probability qj
that the chunk j actually gets executed in the current attempt.

The first chunk is always executed, so we have q1 = 1. Consider the second chunk, which is
executed if no silent error strikes the first chunk, hence q2 = 1−p1. In general, the probability
that the j-th chunk gets executed is

qj =

j−1∏
k=1

(1− pk) .

Now, we are ready to compute the expected execution time of the pattern. The following
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gives the recursive expression:

E(P) =

(
m∏
k=1

(1− pk)

)
C

+

(
1−

m∏
k=1

(1− pk)

)
(R+ E(P))

+

m∑
j=1

qj(wj + V ) . (7)

Specifically, line 1 of Equation (7) shows that the checkpoint at the end of the pattern is
performed only when there has been no silent error in any of the chunks. Otherwise, we
need to re-execute the pattern, after a recovery, as shown in line 2. Finally, line 3 shows the
condition for each chunk j to be executed. By simplifying Equation (7) and approximating
the expression up to the second-order term, as in the proof of Proposition 1, we obtain

E(P) = W +mV + C + λfW 2 +O(
√
λ) ,

where f =
∑m

j=1 βj

(∑m
k=j βk

)
, and it can be concisely written as f = βββTMβββ, where M is

the m×m matrix given by

mi,j =

{
1 for i ≤ j
0 for i > j

.

By replacing M by its symmetric part A = M+MT

2 , which does not affect the value of f , we
obtain the matrix A whose diagonal coefficients are equal to 1 and whose other coefficients
are all equal to 1

2 , and the expected execution time in Equation (6).

Theorem 2. The optimal pattern has m∗ equal-length chunks, total length W ∗ and is such
that:

W ∗ =

√
m∗V + C

1
2

(
1 + 1

m∗

)
λ
, (8)

β∗j =
1

m∗
for 1 ≤ j ≤ m∗ , (9)

where m∗ is either max(1, bm̄∗c) or dm̄∗e with

m̄∗ =

√
C

V
. (10)

The optimal expected overhead is

H∗(P) =
√

2λC +
√

2λV +O(λ) . (11)

Proof. Given the number of chunks m with
∑m

j=1 βj = 1, the function f = βββTAβββ is shown
to be minimized [10, Theorem 1 with r = 1] when βββ follows Equation (9), and its minimum
value is given by f∗ = 1

2

(
1 + 1

m

)
. We derive the two types of overheads as follows:

oef = mV + C ,

orw =
1

2

(
1 +

1

m

)
λ .
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The optimal work length W ∗ =
√

oef
orw

for any fixed m is thus given by Equation (8). The

optimal number of chunks m̄∗ shown in Equation (10) is obtained by minimizing F (m) =
oef × orw. The number of chunks in a pattern can only be a positive integer, so m∗ is
either max(1, bm̄∗c) or dm̄∗e, since F (m) is a convex function of m. Finally, substituting
Equation (10) back into H∗(P) = 2

√
oef × orw + O(λ) gives rise to the optimal expected

overhead as shown in Equation (11).

4 Linear workflows

For an application composed of a chain of tasks, the problem of finding the optimal checkpoint
strategy, i.e., of determining which tasks to checkpoint, in order to minimize the expected
execution time when subject to fail-stop failures, has been solved by Toueg and Babaoglu [36],
using a dynamic programming algorithm. We revisit the problem for silent errors by exploiting
verification in addition to checkpoints. An extended presentation of the results is available
in [3, 5].

4.1 Setup

To deal with silent errors, resilience is provided through the use of checkpointing coupled with
an error detection (or verification) mechanism. When a silent error is detected, we roll back
to the nearest checkpoint and recover from there. As in Section 3.1, let C denote the cost of
checkpointing, R the cost of recovery, and V the cost of a verification.

We consider a chain of tasks T1, T2, . . . , Tn, where each task Ti has a weight wi correspond-
ing to the computational load. For notational convenience, we also define Wi,j =

∑j
k=i+1wk

to be the time to execute tasks Ti+1 to Tj for any i ≤ j. Once again we assume that silent
errors occur following a Poisson process with arrival rate λ and that the probability of having
at least one error during the execution of Wi,j is given by pi,j = 1− e−λWi,j .

We enforce that a verification is always taken immediately before each checkpoint, so that
all checkpoints are valid, and hence only one checkpoint needs to be maintained at any time
during the execution of the application. Furthermore, we assume that errors only strike the
computations, while verifications, checkpoints, and recoveries are failure-free.

The goal is to find which task to verify and which task to checkpoint in order to minimize
the expected execution time of the task chain. To solve this problem, we derive a two-level
dynamic programming algorithm. For convenience, we add a virtual task T0, which is always
checkpointed, and whose recovery cost is zero. This accounts for the fact that it is always
possible to restart the application from scratch at no extra cost. In the following, we describe
the general scheme when considering both verifications and checkpoints.

4.2 Dynamic programming

Figures 4 and 5 illustrate the idea of the algorithm, which contains two dynamic programming
levels, responsible for placing checkpoints and verifications, respectively, as well as an addi-
tional step to compute the expected execution time between two verifications. The following
describes each step of the algorithm in detail.

Placing checkpoints. The first level focuses on the placement of verified checkpoints, i.e.,
checkpoints preceded immediately by a verification. Let Eckpt(c2) denote the expected time

RR n° 8825
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T0 V C T1
. . . Tc1 V C Tc1+1 . . . Tc2 V C . . .

Eckpt(c1) Everif (c1, c2)

Eckpt(c2)

Figure 4: First level of dynamic programming (Eckpt).

. . . Tc1 V C Tc1+1 . . . Tv1 V Tv1+1 . . . Tv2 V . . .

Everif (c1, v1) E(c1, v1, v2)

Everif (c1, v2)

Figure 5: Second level of dynamic programming (Everif ) and computation of expected exe-
cution time between two verifications (E).

to successfully execute all the tasks from T1 to Tc2 , where Tc2 is verified and checkpointed.
Now, to find the last verified checkpoint before Tc2 , we try all possible locations from T0 to
Tc2−1. For each location, say c1, we call the function recursively with Eckpt(c1) (for placing
checkpoints before Tc1), and compute the expected time to execute the tasks from Tc1+1 to
Tc2 . The latter is done through Everif (c1, c2), which also decides where to place additional
verifications between Tc1+1 and Tc2 . Finally, we add the checkpointing cost C (after Tc2) to
Eckpt(c2). Overall, we can express Eckpt(c2) as follows:

Eckpt(c2) = min
0≤c1<c2

{Eckpt(c1) + Everif (c1, c2) + C} .

Note that a location c1 = 0 means that no further checkpoints are added. In this case, we
simply set Eckpt(0) = 0, which initializes the dynamic program. The total expected time to
execute all the tasks from T1 to Tn is thus given by Eckpt(n).

Placing additional verifications. The second level decides where to insert additional
verifications between two tasks with verified checkpoints. The function is initially called from
the first level between two checkpointed tasks Tc1 and Tc2 , each of which also comes with a
verification. Therefore, we define Everif (c1, v2) as the expected time to successfully execute
all the tasks from Tc1+1 to Tv2 , knowing that the last checkpoint is right after task Tc1 , and
there is no additional checkpoint between Tc1+1 and Tv2 . Note that Everif (c1, v2) accounts
only for the time required to execute and verify these tasks. As before, we try all possible
locations for the last verification between Tc1 and Tv2 and, for each location v1, we call the
function recursively with Everif (c1, v1). Furthermore, we add the expected time needed to
successfully execute the tasks Tv1+1 to Tv2 , denoted by E(c1, v1, v2), given the position c1 of
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the last checkpoint. Overall, we can express Everif (c1, v2) as follows:

Everif (c1, v2) = min
c1≤v1<v2

{Everif (c1, v1) + E(c1, v1, v2)} . (12)

Again, the case v1 = c1 means that no further verification is added, so we initialize the
dynamic program with Everif (c1, c1) = 0. Note that the verification cost V at the end of task
Tv2 will be accounted for in the function E(c1, v1, v2).

Computing expected execution time between two verifications. Finally, to compute
the expected time to successfully execute several tasks between two verifications, we need the
position of the last checkpoint c1, as well as the positions of the two verifications v1 and v2.

First, we pay Wv1,v2 by executing all the tasks from Tv1+1 to Tv2 , followed by the cost of
verification V after Tv2 . During the execution, there is a probability pv1,v2 = 1− e−λWv1,v2 of
having a silent error, which will be detected by the verification after Tv2 . In this case, we need
to perform a recovery from the last checkpoint after Tc1 with a cost R (set to 0 if c1 = 0), and
re-execute the tasks from there by calling the function Everif (c1, v1) followed by E(c1, v1, v2).
Therefore, we can express E(c1, v1, v2) as follows:

E(c1, v1, v2) = Wv1,v2 + V + pv1,v2 (R+ Everif (c1, v1) + E(c1, v1, v2)) . (13)

Simplifying Equation (13), we get

E(c1, v1, v2) = eλWv1,v2 (Wv1,v2 + V ) +
(
eλWv1,v2 − 1

)
(R+ Everif (c1, v1)) .

Complexity. The complexity is dominated by the computation of the expected completion
time table Everif (c1, v2), which contains O(n2) entries, and each entry depends on at most
n other entries that are already computed. All tables are computed in a bottom-up fashion,
from the left to the right of the task chain. Hence, the overall complexity of the algorithm is
O(n3).

5 ABFT and checkpointing for linear algebra kernels

In this section we introduce ABFT (Algorithm Based Fault Tolerance) as an application-
specific technique which allows for both error detection and correction. We streamline our
discussion on the CG method, however, the techniques that we describe are applicable to
any iterative solver that uses sparse matrix vector multiplies and vector operations. This list
includes many of the non-stationary iterative solvers such as CGNE, BiCG, BiCGstab where
sparse matrix transpose vector multiply operations also take place. Preconditioned variants
of these solvers with an approximate inverse preconditioner (applied as an SpMxV, or two
SpMxVs) can also be made fault-tolerant with the proposed scheme. The extension to PCG
is described in [19].

In Section 5.1, we first provide a background on the CG method and give an overview
of both Chen’s stability tests [12] and ABFT protection schemes. Then we detail ABFT
techniques for the SpMxV kernel.
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Algorithm 1 The Conjugate Gradient algorithm for a positive definite matrix A.

Input: A ∈ Rn×n,b,x0 ∈ Rn, ε ∈ R
Output: x ∈ Rn : ‖Ax− b‖ ≤ ε
1: r0 ← b−Ax0;
2: p0 ← r0;
3: i← 0;
4: while ‖ri‖ > ε (‖A‖ · ‖r0‖+ ‖b‖) do
5: q← Api;
6: αi ← ‖ri‖2 /pᵀ

i q;
7: xi+1 ← xi + αpi;
8: ri+1 ← ri − αq;
9: β ← ‖ri+1‖2 / ‖ri‖2;

10: pi+1 ← ri+1 + β pi;
11: i← i+ 1;
12: end while
13: return xi;

5.1 CG and fault tolerance mechanisms

The code for the CG method is shown in Algorithm 1. The main loop features a sparse matrix-
vector multiply, two inner products (for pᵀ

i q and ‖ri+1‖2), and three vector operations of the
form axpy.

Chen’s stability tests [12] amount to checking the orthogonality of vectors pi+1 and q,
at the price of computing (pᵀ

i+1q)/(‖pi+1‖ ‖qi‖), and to checking the residual at the price
of an additional SpMxV operation Axi − b. The dominant cost of these verifications is the
additional SpMxV operation.

We investigate three fault tolerance mechanisms. The first one is Online-Detection;
this is Chen’s original approach modified to save the matrix A in addition to the current
iteration vectors. This is needed when a silent error is detected: if this error comes for a
corruption in data memory, we need to recover with a valid copy of the data matrix A. The
second one is ABFT-Detection, which detects errors and restarts from the most recent
checkpoint. The thirds one is ABFT-Correction, which detects errors and corrects if
there was only one, otherwise restarts from the last checkpoint. The three methods under
the study keeps a valid copy of A and have exactly the same checkpoint cost.

We now introduce the ingredients of our own protection and verification mechanisms
ABFT-Detection and ABFT-Correction. We use ABFT techniques to protect the
SpMxV, its result (hence the vector q), the matrix A and the input vector pi. As ABFT
methods for vector operations is as costly as a repeated computation, we use TMR for them
for simplicity. That is we do not protect pi, q, ri, and xi of the ith loop beyond the SpMxV
at line 5 with ABFT, but we compute the dots, norms and axpy operations in resilient mode.

Although theoretically possible, constructing ABFT mechanism to detect up to k errors
is practically not feasible for k > 2. The same mechanism can be used to correct up to bk/2c.
Therefore, we focus on detecting up to two errors and correcting single errors. That is, we
detect up to two errors in the computation q ← Api (two entries in q are faulty), or in
pi, or in the sparse representation of the matrix A. With TMR, we assume that the errors
in the computation are not overly frequent so that two results out of three are correct (we
assume errors do not strike the vector data here). Our fault-tolerant CG versions thus have
the following ingredients: ABFT to detect up to two errors in the SpMxV and correct up to
one; TMR for vector operations; and checkpoint and roll-back in case errors are not corrected.
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In the rest of this section, we discuss the proposed ABFT method for the SpMxV (combining
ABFT with checkpointing is later in Section 5.3).

5.2 ABFT-SpMxV

The overhead of the standard single error correcting ABFT technique is too high for the
sparse matrix-vector product case. Shantaram et al. [35] propose a cheaper ABFT SpMxV
algorithm that guarantees detection of single errors striking either the computation or the
memory representation of the two input operands (matrix and vector). As their results depend
on the sparse storage format adopted, throughout this section we assume that sparse matrices
are stored in the compressed storage format by rows (CSR) format [32, Sec. 3.4], that is by
means of three distinct arrays, namely Colid ∈ Nnnz(A), Val ∈ Rnnz(A) and Rowidx ∈ Nn+1.

Shantaram et al. can protect y← Ax, where A ∈ Rn×n and x,y ∈ Rn. To perform error
detection, they rely on a column checksum vector c defined by

cj =
n∑
i=1

ai,j (14)

and an auxiliary copy x′ of the x vector. After having performed the actual SpMxV, to
validate the result it suffices to compute

∑n
i=1 yi, cᵀx and cᵀx′, and to compare their values.

It can be shown [35] that in the case of no errors, these three quantities carry the same value,
whereas if a single error strikes either the memory or the computation, one of them must
differ from the other two. Nevertheless, this method requires A to be strictly diagonally
dominant, that seems to restrict too much the practical applicability of their ABFT scheme.
Shantaram et al. need this condition to ensure the detection of errors striking an entry of x
corresponding to a zero checksum column of A. We further analyze that case and show how
to overcome the issue without imposing any restriction on A.

A nice way to characterize the problem is expressing it in geometrical terms. Let us
consider the computation of a single entry of the checksum as

(wᵀA)j =

n∑
i=1

wiai,j = wᵀAj ,

where w ∈ Rn denotes the weight vector and Aj the j-th column of A. Let us now interpret
such an operation as the result of the scalar product 〈·, ·〉 : Rn×Rn → R defined by 〈u,v〉 7→
uᵀv. It is clear that a checksum entry is zero if and only if the corresponding column of the
matrix is orthogonal to the weight vector. In (14), we have chosen w to be such that wi = 1
for 1 ≤ i ≤ n, in order to make the computation easier. Let us see now what happens without
this restriction.

The problem reduces to finding a vector w ∈ Rn that is not orthogonal to any vector out
of a basis B = {b1, . . . ,bn} of Rn – the rows of the input matrix. Each one of these n vectors
is perpendicular to a hyperplane hi of Rn, and w does not verify the condition

〈w,bi〉 6= 0, (15)

for any i, if and only if it lies on hi. As the Lebesgue measure in Rn of an hyperplane of Rn

itself is zero, the union of these hyperplanes is measurable with mn (
⋃n
i=1 hi) = 0, where mn
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Algorithm 2 ABFT-protected SpMxV, detection of 2 errors, correction of 1 error

Input: A ∈ Rn×n(asVal ∈ Rnnz(A),Colid ∈ Nnnz(A),Rowidx ∈ Rn), x ∈ Rn

Output: y = Ax, correction of single error or detection of double error
1: global Wᵀ ← [11

1
2

...

...
1
n] ∈ R2×n;

2: global Wᵀ ←
[
Wᵀ 1

n+1

]
∈ R2×n+1;

3: x′ ← x;
4: [C,M, cr, cx] = computeChecksums(Val , Colid , Rowidx );
5: return SpMxV(Val , Colid , Rowidx , x, x′, M, cr, cx);

6: function computeChecksums(Val , Colid , Rowidx )
7: Cᵀ ←WᵀA;
8: M←W −C;
9: cr ←WᵀRowidx ;

10: cx ←Wᵀx;
11: return C,M, cr, cx;

12: function SpMxV(Val , Colid , Rowidx , x, x′, C, M, cr, cx)
13: sr ← 0 ∈ R2×1;
14: for i← 1 to n do
15: yi ← 0;
16: sr ← sr +

[w1,i
w2,i

]
Rowidx i;

17: for j ← Rowidx i to Rowidx i+1 − 1 do
18: ind← Colid j ;
19: yi ← yi + Val j · xind;

20: dr = cr − sr;
21: dx = Wᵀy −Cᵀx;
22: dx′ = Wᵀ (x′ − y)−Mᵀx;
23: if dr = 0 ∧ dx = 0 ∧ dx′ = 0 then
24: return y;
25: else
26: CorrectErrors(Val , Colid , Rowidx , x, x′, C, M, dr, dx, dx′ , cr, cx);

denotes the Lebesgue measure of Rn. Therefore, the probability that a vector w randomly
picked in Rn does not satisfy condition (15) for any i is zero.

Nevertheless, there are many reasons to consider zero checksum columns. First of all,
when working with finite precision, the number of elements in Rn one can have is finite, and
the probability of randomly picking a vector that is orthogonal to a given one could be bigger
than zero. Moreover, a coefficient matrix usually comes from the discretization of a physical
problem, and the distribution of its columns cannot be considered as random. Finally, using a
randomly chosen vector instead of (1, . . . , 1)ᵀ increases the number of required floating point
operations, causing a growth of both execution time and rounding errors. Therefore, we would
like to keep w = (1, . . . , 1)ᵀ as the vector of choice, in which case we need to protect SpMxV
with matrices having zero column sums. There are many matrices with this property, for
example the Laplacian matrices of graphs [13, Chapter 1].

In Algorithm 2, we propose an ABFT SpMxV method that uses weighted checksums and
does not require the matrix to be strictly diagonally dominant. The idea is to compute the
checksum vector and then shift it by adding to all of its entries a constant value chosen so that
all of the elements of the new vector are different from zero. We give the result in Theorem 3
for the simpler case of single error detection without correction, in which case Algorithm 2
has W = (1, . . . , 1)ᵀ at line 1 and raises an error at line 26 (instead of correcting the error)
if the tests at line 23 are not passed. The cases of multiple error detection and single error
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correction are proved in a technical report [20, Section 3.2].

Theorem 3 (Correctness of Algorithm 2 for error detection). Let A ∈ Rn×n be a square
matrix, let x,y ∈ Rn be the input and output vector respectively, and let x′ = x. Let us
assume that the algorithm performs the computation

ỹ← Ãx̃, (16)

where Ã ∈ Rn×n and x̃ ∈ Rn are the possibly faulty representations of A and x respectively,
while ỹ ∈ Rn is the possibly erroneous result of the sparse matrix-vector product. Let us also
assume that the encoding scheme relies on

1. an auxiliary checksum vector c = [
∑n

i=1 ai,1 + k, . . . ,
∑n

i=1 ai,n + k], where k is such that∑n
i=1 ai,j + k 6= 0 for 1 ≤ j ≤ n,

2. an auxiliary checksum yn+1 = k
∑n

i=i x̃i,

3. an auxiliary counter sr initialized to 0 and updated at runtime by adding the value of
the hit element each time the Rowidx array is accessed,

4. an auxiliary checksum cr =
∑n

i=1 Rowidx i ∈ N.

Then, a single error in the computation of the SpMxV causes one of the following conditions
to fail:

i. cᵀx̃ =
∑n+1

i=1 ỹi, difference is in dx at line 21,

ii. cᵀx′ =
∑n+1

i=1 ỹi, difference is in dx′ at line 22;

iii. sr = cr, difference is in dr at line 20.

The proof of this theorem is technical and is available elsewhere [20, Theorem 1].
The function computeChecksum in Algorithm 2 requires just the knowledge of the

matrix. Hence in the common scenario of many SpMxVs with the same matrix, it is enough
to invoke it once to protect several matrix-vector multiplications. This observation will be
crucial when talking about the performances of the checksumming techniques.

Extensions to k ≥ 2 errors are discussed elsewhere [20, Section 3.2], where the following
are detailed. The method just described can be extended to detect up to a total of k errors
anywhere in the computation, in the representation of A, or in the vector x. Building up the
necessary structures requires O (k nnz(A)) time, and the overhead per SpMxV is O(kn). For
the particular case of k = 2 a result similar to that in Theorem 3 is also shown.

We now discuss error correction. If at least one of the tests at line 23 of Algorithm 2 fails,
the algorithm invokes CorrectErrors in order to determine whether just one error struck
either the computation or the memory and, in case, correct it. Whenever a single error is
detected, disregarding its location (i.e., computation or memory) it is corrected by means of a
succession of various steps. Once the presence of errors is detected, the correction mechanism
tries to determine the number of striking errors and, in case of single error, its position. At
this point the errors are corrected using the values of the checksums and if need be partial
recomputations of the result are performed.

Specifically, we proceed as follows. To detect errors striking Rowidx , we compute the
ratio d of the second component of dr to the first one, and check whether its distance from
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an integer is smaller than a certain threshold parameter ε. If it is so, the algorithm concludes
that the d-th element of Rowidx is faulty, performs the correction by subtracting the first
component of dr to Rowidx d, and recomputes yd and yd−1, if the error in Rowindexd is a
decrement; or yd+1 if it was an increment. Otherwise, it just emits an error.

The correction of errors striking Val , Colid and the computation of y are corrected to-
gether. Let now d be the ratio of the second component of dx to the first one. If d is near
enough to an integer, the algorithm computes the checksum matrix C′ = WᵀA and considers
the number z

C̃
of non-zero columns of the difference matrix C̃ =| C−C′ |. At this stage,

three cases are possible:

� If z
C̃

= 0, then the error is in the computation of yd, and can be corrected by simply
recomputing this value.

� If z
C̃

= 1, then the error concerns an element of Val . Let us call f the index of the

non-zero column of C̃. The algorithm finds the element of Val corresponding to the
entry at row d and column f of A and corrects it by using the column checksums much
like as described for Rowidx . Afterwards, yd is recomputed to fix the result.

� If z
C̃

= 2, then the error concerns an element of Colid . Let us call f1 and f2 the index of
the two non-zero columns and m1, m2 the first and last elements of Colid corresponding
to non-zeros in row d. It is clear that there exists exactly one index m∗ between m1 and
m2 such that either Colidm∗ = f1 or Colidm∗ = f2. To correct the error it suffices to
switch the current value of Colidm∗ , i.e., putting Colidm∗ = f2 in the former case and
Colidm∗ = f1 in the latter. Again, yd has to be recomputed.

� if z
C̃
> 2, then errors can be detected but not corrected, and an error is emitted.

To correct errors striking x, the algorithm computes d, that is the ratio of the second
component of dx′ to the first one, and checks that the distance between d and the nearest
integer is smaller than ε. Provided that this condition is verified, the algorithm computes
the value of the error τ =

∑n
i=1 xi − cx1 and corrects xd = xd − τ . The result is updated by

subtracting from y the vector yτ = Axτ , where xτ ∈ Rn×n is such that xτd = τ and xτi = 0
otherwise.

Finally, note that double errors could be shadowed when using Algorithm 2, but the
probability of such an event is negligible. Still, there exists an improved version which avoids
this issue by adding a third checksum [20, Section 3.2].

5.3 Performance model

The performance model is a simplified instance of the one discussed in Section 4, and we
instantiate it for the three methods that we are considering, namely Online-Detection,
ABFT-Detection and ABFT-Correction. We have a linear chain of identical tasks,
where each task corresponds to one or several CG iterations. We execute T units of work
followed by a verification, which we call a chunk, and we repeat this scheme s times, i.e.,
we compute s chunks, before taking a checkpoint. We say that the s chunks constitute a
frame. The whole execution is then partitioned into frames. We assume that the checkpoint,
recovery and verification operations are error-free. For each method below, we let C, R and
V be the respective cost of these operations. Finally, and as before, assume a Poisson process
for errors and let q be the probability of successful execution for each chunk: q = e−λT , where
λ is the fault rate.
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5.3.1 Online-Detection

For Chen’s method [12], we have the following parameters:

� We have chunks of d iterations, hence T = dTiter, where Titer is the raw cost of a CG
iteration without any resilience method.

� The verification time V is the cost of the operations described in Section 5.1.

� As for silent errors, the application is protected from arithmetic errors in the ALU, as
in Chen’s original method, but also for corruption in data memory (because we also
checkpoint the matrix A). Let λa be the rate of arithmetic errors, and λm be the rate
of memory errors. For the latter, we have λm = Mλword if the data memory consists
of M words, each susceptible to be corrupted with rate λword. Altogether, since the
two error sources are independent, they have a cumulated rate of λ = λa + λm, and
the success probability for a chunk is q = e−λT . The optimal values of d and s can be
computed by the same method as in Section 4.

5.3.2 ABFT-Detection

When using ABFT techniques, we detect possible errors every iteration, so a chunk is a single
iteration, and T = Titer. For ABFT-Detection, V is the overhead due to the checksums
and redundant operations to detect a single error in the method.

ABFT-Detection can protect the application from the same silent errors as Online-
Detection, and just as before the success probability for a chunk (a single iteration here)
is q = e−λT . ¡¡¡¡¡¡¡ .mine

5.3.3 ABFT-Correction

In addition to detection, we now correct single errors at every iteration. Just as for ABFT-
Detection, a chunk is a single iteration, and T = Titer, but V corresponds to a larger
overhead, mainly due to the extra checksums needed to detect two errors and correct a single
one.

The main difference lies in the error rate. An iteration with ABFT-Correction is
successful if zero or one error has struck during that iteration, so that the success probability is
much higher than for Online-Detection and ABFT-Detection. We compute that value
of the success probability as follows. We have a Poisson process of rate λ, where λ = λa +λm
as for Online-Detection and ABFT-Detection. The probability of exactly k errors in

time T is (λT )k

k! e−λT [27], hence the probability of no error is e−λT and the probability of
exactly one error is λTe−λT , so that q = e−λT + λTe−λT .

5.4 Experiments

Comprehensive tests were performed and reported in the technical report [20]. The main ob-
servation is that ABFT-Correction outperforms both Online-Detection and ABFT-
Detection for a wide range of fault rates, thereby demonstrating that combining check-
pointing with ABFT correcting techniques is more efficient than pure checkpointing for most
practical situations.
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6 Conclusion

Both fail-stop errors and silent data corruptions are major threats to executing HPC appli-
cations at scale. While many techniques have been advocated to deal with fail-stop errors,
the lack of an efficient solution to handle silent errors is a real issue.

We have presented both a general-purpose solution and application-specific techniques to
deal with silent data corruptions, with a focus on minimizing the overhead. For a divisible load
application, we have extended the classical bound of Young/Daly to handle silent errors by
combining checkpointing and verification mechanisms. For linear workflows, we have devised a
polynomial-time dynamic programming algorithm that decides the optimal checkpointing and
verification positions. Then, we have introduced ABFT as an application-specific technique
to both detect and correct silent errors in iterative solvers that use sparse matrix vector
multiplies and vector operations.

Our approach only addresses silent data corruptions. While several techniques have been
developed to cope with either type of errors, few approaches are devoted to addressing both
of them simultaneously. Hence, the next step is to extend our study to encompass both fail-
stop and silent data corruptions in order to propose a comprehensive solution for executing
applications on large scale platforms.
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