
Multi-level checkpointing and silent error detection

for linear work�owsI

Anne Benoita, Aurélien Cavelana, Yves Roberta,b,∗, Hongyang Suna

aEcole Normale Superieure de Lyon & INRIA, France
bUniversity of Tennessee Knoxville, USA

Abstract

We focus on High Performance Computing (HPC) work�ows whose dependency graph forms a
linear chain, and we extend single-level checkpointing in two important directions. Our �rst
contribution targets silent errors, and combines in-memory checkpoints with both partial and
guaranteed veri�cations. Our second contribution deals with multi-level checkpointing for fail-
stop errors. We present sophisticated dynamic programming algorithms that return the optimal
solution for each problem in polynomial time. We also show how to combine all these techniques
and solve the problem with both fail-stop and silent errors. Simulation results demonstrate that
these extensions lead to signi�cantly improved performance compared to the standard single-level
checkpointing algorithm.

Keywords: Fault-tolerance, Fail-stop errors, Silent errors, Multi-level checkpointing, Error
detection, Veri�cation mechanism, Linear work�ows, Dynamic programming algorithm.

1. Introduction

Resilience is one of the major challenges for extreme-scale computing [18, 19]. Checkpoint-
ing [21] is the de-facto standard approach to dealing with fail-stop errors, de�ned as fatal inter-
ruptions (such as hardware or power failures, resource crashes) that call the faulty node for a
reboot or replacement. However, the traditional single-level checkpointing method su�ers from
signi�cant overhead [29, 15, 41], and multi-level checkpointing protocols now represent the state-
of-the-art [38, 7, 25]. These protocols allow for di�erent levels of checkpoints to be set, each with
a di�erent overhead and recovery ability. Typically, each level corresponds to a speci�c error type,
and is associated with a storage device that is resilient to that type. The main idea of multi-level
checkpointing is that checkpoints are taken for each level of faults, but at di�erent rates. Intu-
itively, the less frequent the faults, the longer the interval between two checkpoints: this is because
the risk of a failure striking is lower when going to higher levels; hence the expected re-execution
time is lower too; one can safely checkpoint less frequently, thereby reducing failure-free overhead
(checkpointing is useless in the absence of a fault).

In this paper, we �rst consider a very general scenario, where the platform is subject to k
levels of fail-stop errors, numbered from 1 to k. Level ` is associated with an error rate λ`, a
checkpointing cost C(`), and a recovery cost R(`). A fault at level ` destroys all the checkpoints
of lower levels (from 1 to ` − 1 included) and implies a rollback to a checkpoint of level ` or
higher. Similarly, a recovery of level ` will restore data from all lower levels. As mentioned, fault
rates are decreasing and checkpoint/recovery costs are increasing when we go to higher levels:
λ1 ≥ λ2 ≥ · · · ≥ λk, C(1) ≤ C(2) ≤ · · · ≤ C(k), and R(1) ≤ R(2) ≤ · · · ≤ R(k). The problem is
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to determine the optimal locations to place checkpoints of various levels in a High-Performance
Computing (HPC) application.

In addition to fail-stop errors, silent errors, also known as silent data corruptions (such as soft
faults in cache or ALU, double bit �ips), constitute another threat that cannot be ignored any
longer [38, 40, 49, 50]. In contrast to a fail-stop error whose detection is immediate, a silent error
is identi�ed only when the corrupted data leads to an unusual application behavior. To deal with
silent errors, a traditional checkpointing strategy can still be used, provided that it is coupled with
a veri�cation mechanism to detect silent errors [12, 22, 43]. Such a veri�cation mechanism can
be either general-purpose (e.g., based on replication [30] or even triplication [37]) or application-
speci�c (e.g., based on algorithm-based fault tolerance (ABFT) [16], on approximate re-execution
for ordinary and partial di�erential equation solvers [13], or on orthogonality checks for Krylov-
based sparse solvers [22, 43]). Because veri�cation mechanisms can be costly, alternative techniques
capable of rapidly detecting silent errors, with the risk of missing some errors, have been recently
developed and studied [3, 5, 14, 20]. We call these veri�cations partial veri�cations, while perfect
veri�cations (with no error missed) are referred to as guaranteed veri�cations. Furthermore, rather
than checkpointing on stable storage (e.g., an external disk), a lightweight mechanism of in-memory
checkpoints can be provided to cope with silent errors: one keeps a local copy of the data that has
not been corrupted when a silent error strikes, and it can be used to perform a recovery rapidly.
However, such local copies are lost once a fail-stop error occurs, and hence checkpoints on stable
storage must also be provided when dealing with both sources of errors.

Designing resilience algorithms by combining all of these techniques is quite challenging. In this
paper, we deal with a simpli�ed, yet realistic, application framework, where a set of application
work�ows exchange data at the end of their execution. Such a framework can be modeled as
a task graph whose dependencies form a linear chain. This scenario corresponds to an HPC
application whose work�ow is partitioned into a succession of (typically large) tightly-coupled
computational kernels, each of which is identi�ed as a task. Hence, we consider a linear chain
of tasks T1 → T2 → · · · → Tn, where each task Ti (1 ≤ i ≤ n) has a weight wi corresponding
to its computational load. The following summarizes our approach to enforcing resilience in this
simpli�ed application framework:

Silent errors. To cope with silent errors, we couple in-memory checkpoints with both partial and
guaranteed veri�cations. At the end of each task, we can perform either a partial veri�cation
(with cost V ) or a guaranteed veri�cation (with cost V ∗) of the task output; or, probably
less frequently, we can perform a guaranteed veri�cation followed by a memory checkpoint
(with cost CM ). Note that we do not take the risk of storing a corrupted checkpoint, hence
the need for a guaranteed veri�cation.

Fail-stop errors. To cope with fail-stop errors, we use general multi-level checkpointing and
schedule checkpoints of various levels at the end of carefully selected tasks. Checkpoints
of level 1 are inserted more frequently than checkpoints of level 2, which themselves are
more frequent than checkpoints of level 3, and so on. In our approach, assuming that all
checkpointing levels are used, a checkpoint at level ` is always preceded by checkpoints at
all lower levels 1 to `− 1, which makes good sense in practice (e.g., with two levels, say local
SSD and remote disk, one writes the data onto the local SSD before transferring it to remote
the disk). In this context, the checkpointing cost C(`) at level ` is the cost paid to save data
when going from level `− 1 to level `.

Both error sources. To cope with both fail-stop and silent errors, we combine all these tech-
niques: partial and guaranteed veri�cations, in-memory checkpointing, and several additional
levels of checkpointing.

The main contributions of this paper are several sophisticated dynamic programming algo-
rithms that return the optimal solution for each of the three problems above, i.e., the solution
that minimizes the expected execution time of the task chain in polynomial time. To the best of
our knowledge, this is the �rst paper that combines multi-level checkpointing with guaranteed and
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partial veri�cations to deal with both fail-stop and silent errors in linear work�ows. Furthermore,
we present extensive simulations that demonstrate the usefulness of mixing these techniques, and,
in particular, we demonstrate the gain obtained thanks to additional veri�cations and multi-level
checkpointing. We show that it may be bene�cial to use only some of the checkpointing levels; in
this case they are renumbered from 1 to k. The best combination of levels to use can be found by
an exhaustive search, since the number of levels k is usually small (3 or 4).

The rest of this paper is organized as follows. We present the dynamic programming algorithm
for silent errors with memory checkpoints and veri�cations in Section 2 and that for fail-stop errors
in Section 3. The solution to deal with both error sources is described in Section 4. Simulation
results are presented in Section 5. We survey related work in Section 6. Finally, we give concluding
remarks and hints for future work in Section 7.

2. Memory checkpointing and veri�cations for silent errors

In this section, we present a sophisticated dynamic programming algorithm to decide which
tasks to checkpoint and which tasks to verify. We �rst introduce the model in Section 2.1. We
describe in Section 2.2 a dynamic programming algorithm for the case where only veri�ed memory
checkpoints are taken (i.e., memory checkpoints preceded by a guaranteed veri�cation). We show
how to extend this algorithm to add additional guaranteed veri�cations between checkpoints in
Section 2.3, and �nally we deal with the more complex case of partial veri�cations in Section 2.4.

2.1. Model

We consider a chain T1 → T2 → · · · → Tn of n tasks that execute on a large-scale platform
subject to silent errors. Each task Ti is associated with a computational load or weight wi, which is
assumed to be known to the algorithm. For notational convenience, we de�ne W]i,j] =

∑j
p=i+1 wp

to be the total weight of tasks Ti+1 to Tj for any 0 ≤ i < j ≤ n. The arrival times of silent
errors follow a Poisson process with error rate λs. Unlike fail-stop errors, silent errors do not
destroy the memory content when they strike. Hence, we can cope with silent errors by using
lightweight memory checkpoints. When a silent error is detected, either by a partial veri�cation
or by a guaranteed one, we roll back to the nearest memory checkpoint, and recover from the
memory copy there. This is much cheaper than checkpointing on and recovering from a disk
checkpoint. We enforce that a guaranteed veri�cation is always taken immediately before each
memory checkpoint, so that all checkpoints are valid, and hence only one checkpoint needs to be
maintained at any time during the execution of the application. Furthermore, we assume that the
costs of checkpointing, recovery and veri�cations are uniform across di�erent tasks, and that they
are protected from faults (i.e., silent errors only strike the computations).

Let CM denote the cost of memory checkpointing and RM the cost of memory recovery. Also,
let V ∗ denote the cost of guaranteed veri�cation and V the cost of a partial veri�cation. The
accuracy of a partial veri�cation is measured by its recall, which is denoted by r and represents
the proportion of detected errors over all silent errors that have occurred during the execution.1

For notational convenience, we de�ne g = 1 − r to be the proportion of undetected errors. Note
that the guaranteed veri�cation can be considered as one with recall r∗ = 1. Since a partial
veri�cation usually incurs a much smaller cost and yet has a reasonable recall [5, 14], it is highly
attractive for detecting silent errors, and we make use of them between guaranteed veri�cations.
For convenience, we introduce before task T1 a virtual task T0, which is checkpointed, and whose
recovery cost is zero. This accounts for the fact that it is always possible to restart the application
from scratch (i.e., recover from T0) at no extra cost.

1Another measure of accuracy for a partial veri�cation is precision, which is denoted as p and represents the
proportion of true errors over all silent errors that are reported by the veri�cation. Typically, a tradeo� exists
between the recall and precision in the design of a partial veri�cation mechanism. In this paper, we assume perfect
precision, i.e., p = 1, which has been shown to represent the most useful con�guration for optimizing the execution
overhead [4].
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T0 V ∗ CM T1
. . . Tm1 V ∗ CM Tm1+1

. . . Tm2 V ∗ CM . . .

Emem(m1) Ecomp(m1,m2)

Emem(m2)

Figure 1: Placing veri�ed memory checkpoints only: m2 is �xed, and we try all possible locations for an additional
veri�ed memory checkpoint at m1 between T0 and Tm2 . Note that all subproblems Emem(m1), with 0 ≤ m1 < m2,
have already been computed.

The Silent problem consists in �nding the optimal set of tasks to checkpoint as well as the
optimal set of tasks to verify, along with the type of veri�cation (guaranteed or partial) that should
be applied. The objective is to minimize the total expected execution time of the task chain.

2.2. With memory checkpoints only

In this section, we present a dynamic programming algorithm when using only veri�ed memory
checkpoints (memory checkpoints preceded by a guaranteed veri�cation). A naive brute-force
algorithm would have to try all possible solutions (i.e., deciding whether or not to add a checkpoint
after each task), resulting in 2n operations. However, by remarking that the problem can be divided
into independent subproblems, we can compute the optimal solution in polynomial time:

Theorem 1. The optimal solution to the Silent problem with only memory checkpoints can be
obtained using a dynamic programming algorithm in O(n2) time and O(n) space, where n is the
number of tasks in the chain.

The remainder of this section is devoted to proving this theorem. We �rst detail how the dy-
namic programming algorithm places the memory checkpoints in Section 2.2.1, and then we detail
the computation of expected execution time between two memory checkpoints in Section 2.2.2.
Finally, we provide the algorithm complexity in Section 2.2.3.

2.2.1. Placing memory checkpoints

We de�ne Emem(m2) as the optimal expected time needed to successfully execute all tasks
from T1 to Tm2

, where there is a veri�ed memory checkpoint after task Tm2
. The goal is to obtain:

Emem(n) ,

which is the optimal expected execution time needed to successfully execute all the tasks in the
chain. Intuitively, the idea is to compute Emem(0),Emem(1),Emem(2), . . . ,Emem(n), in this order,
so that we can compute each new value by reusing previously computed optimal results. We use
memorization: we store and reuse solutions to subproblems instead of recomputing them. This is
possible because Emem(i), for 0 ≤ i < n, does not depend on tasks Ti+1 to Tn. In other words,
Emem(i) can be used as an independent subproblem, which we compute once and then reuse to
solve all Emem(j) problems, with i < j ≤ n.

To compute the general subproblem Emem(m2), we try all possible locations for an additional
intermediate veri�ed memory checkpoint between tasks T0 and Tm2

, as illustrated in Figure 1.
For each possible location m1, we can reuse the optimal result given by Emem(m1), and we call
Ecomp(m1,m2), the expected time needed to successfully execute tasks Tm1+1 to Tm2

, knowing that
there is no intermediate checkpoint. Finally, we add the cost of the checkpoint CM following Tm2

(note that we account for the cost of the veri�cation in Ecomp(m1,m2)), and we can write:

Emem(m2) = min
0≤m1<m2

{
Emem(m1) + Ecomp(m1,m2)

}
+ CM ,

which is initialized with:

Emem(0) = 0 .
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T0 V ∗ CM T1
. . . Tm1 V ∗ CM Tm1+1

. . . Tm2 V ∗ CM . . .

Emem(m1) Everif (m1,m2)

Emem(m2)

Figure 2: Placing memory checkpoints (with guaranteed veri�cations): m2 is �xed, and we try all possible lo-
cations for m1. Note that all subproblems Emem(m1), with 0 ≤ m1 < m2, have already been computed, while
Everif (m1,m2) is computed by yet another dynamic programming level to be described later (see Figure 3).

Indeed, when m2 = 0, there is no task to execute, and no room for extra checkpoints.

2.2.2. Computing Ecomp(m1,m2)

Now, to compute the expected time needed to successfully execute several tasks between two
veri�ed memory checkpoints, we need only the position of the last veri�ed memory checkpoint m1,
and the position of the next veri�ed memory checkpoint m2.

First, we pay the cost W]m1,m2] to execute all the tasks from Tm1+1 to Tm2
. Then, we pay

the cost of the guaranteed veri�cation V ∗. There is a probability ps]m1,m2] = 1 − e−λsW]m1,m2] of
detecting a silent error, in which case we recover from the last veri�ed memory checkpoint at m1,
with cost RM (set to 0 if m1 = 0) and we re-execute all the tasks from there, which is simply
Ecomp(m1,m2). Therefore, we have:

Ecomp(m1,m2) = W]m1,m2] + V ∗ + ps]m1,m2]

(
RM + Ecomp(m1,m2)

)
.

Simplifying the equation above and solving for Ecomp(m1,m2), we obtain:

Ecomp(m1,m2) = eλsW]m1,m2]
(
W]m1,m2] + V ∗

)
+
(
eλsW]m1,m2] − 1

)
RM .

2.2.3. Complexity

The complexity is dominated by the computation of the table Emem(m1), which contains O(n)
entries, and each entry depends on at most n other entries that are already computed. Hence,
the overall complexity of the algorithm is O(n2) in time and O(n) in space. Note that each entry
is computed only once using memoization, a well-known technique in dynamic programming [23]
that leads to a recursive algorithm whose cost is the same as its iterative counterpart.

2.3. With memory checkpoints and guaranteed veri�cations

In this section, we extend the dynamic programming algorithm presented in Section 2.2 to allow
for additional intermediate guaranteed veri�cations between two (veri�ed) memory checkpoints:

Theorem 2. The optimal solution to the Silent problem with memory checkpoints and interme-
diate guaranteed veri�cations can be obtained using a dynamic programming algorithm in O(n3)
time and O(n2) space, where n is the number of tasks in the chain.

Figures 2 and 3 illustrate the idea of the algorithm, which now contains two dynamic program-
ming levels, responsible for placing memory checkpoints (Figure 2) and guaranteed veri�cations
(Figure 3), respectively. In the �rst level, Ecomp(m1,m2) is replaced by Everif (m1,m2), which ac-
counts for additional guaranteed veri�cations. The remainder of this section is devoted to proving
this theorem.

2.3.1. Placing memory checkpoints

The �rst level is the same as before (see Section 2.2.1), except that instead of calling Ecomp(m1,m2)
to compute the expected execution time between two memory checkpoints, we now call Everif (m1,m2)
to try and place additional guaranteed veri�cations in this interval (see Figure 2). We can write:

Emem(m2) = min
0≤m1<m2

{
Emem(m1) + Everif (m1,m2)

}
+ CM ,
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T0 V ∗ CM . . . Tm1 V ∗ CM Tm1+1 . . . Tv1 V ∗ Tv1+1 . . . Tv2 V ∗ . . .

Everif (m1, v1) Ecomp(m1, v1, v2)

Everif (m1, v2)

Figure 3: Placing guaranteed veri�cations: m1 and v2 are �xed, and we try all possible locations for an additional
guaranteed veri�cation at v1 between Tm1 and Tv2 . Note that all subproblems Everif (m1, v1), with m1 ≤ v1 < v2,
have already been computed.

which is initialized by:

Emem(0) = 0 .

2.3.2. Placing guaranteed veri�cations

The second level searches where to insert additional guaranteed veri�cations between the last
memory checkpoint at m1 and the next guaranteed veri�cation at v2. We de�ne Everif (m1, v2) as
the expected execution time needed to sucessfully execute tasks from Tm1+1 to Tv2 . The function is
�rst called from the �rst level between two memory checkpoints with v2 = m2 (as Everif (m1,m2)),
each of which also comes with a guaranteed veri�cation. The approach to solve the problem is the
same as before: supposem1 = 0, we compute all Everif (0, 1),Everif (0, 2),Everif (0, 3), . . . ,Everif (0, n),
in this order, so that we can compute each step by reusing all previously computed optimal results
as before. But because we have n possible values for m1, we e�ectively need to solve this problem
n times.

Again, this is possible because Everif (m1, v2), 0 ≤ m1 < v2 < n does not depend upon tasks
Tv2+1 to Tn. In other words, Everif (m1, v2) can be used as an independent subproblem, which is
computed exactly once for each (m1, v2). These values are stored in a 2D table, so that we can
reuse them to solve the larger problems as we progress from T0 to Tn.

In order to solve Everif (m1, v2), we try all possible locations for the last veri�cation be-
tween Tm1

and Tv2 , and for each possible location v1, we can reuse the optimal result given by
Everif (m1, v1), and we need to compute the expected time needed to successfully execute the tasks
between two guaranteed veri�cations from Tv1+1 to Tv2 , denoted by Ecomp(m1, v1, v2). Therefore,
we express Everif (m1, v2) as follows:

Everif (m1, v2) = min
m1≤v1<v2

{
Everif (m1, v1) + Ecomp(m1, v1, v2)

}
, (1)

which is initialized by:

Everif (m1,m1) = 0 ,

since there is no task to execute and no room for additional guaranteed veri�cations. Finally, note
that we omit the cost of the guaranteed veri�cation after Tv2 here, because it is accounted for in
the function Ecomp(m1, v1, v2).

2.3.3. Computing Ecomp(m1, v1, v2)

In order to compute the expected time needed to successfully execute tasks between two ver-
i�cations at v1 and v2, we also need to remember the position of the last memory checkpoint
at m1.

First, we pay W]v1,v2], which is the time needed to execute tasks from Tv1+1 to Tv2 , and
we account for the cost of the guaranteed veri�cation V ∗. Then, there is a probability ps]v1,v2] =

1−e−λsW]v1,v2] of detecting a silent error, in which case we recover from the last memory checkpoint
with a cost RM (set to 0 if m1 = 0) and only re-execute the tasks from there, using the already
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computed Everif (m1, v1) followed by Ecomp(m1, v1, v2) as before. Therefore, we obtain:

Ecomp(m1, v1, v2) = W]v1,v2] + V ∗ + ps]v1,v2]

(
RM + Everif (m1, v1) + Ecomp(m1, v1, v2)

)
.

Simplifying the equation above and solving for Ecomp(m1, v1, v2), we obtain:

Ecomp(m1, v1, v2) = eλsW]v1,v2]
(
W]v1,v2] + V ∗

)
+
(
eλsW]v1,v2] − 1

) (
RM + Everif (m1, v1)

)
.

2.3.4. Complexity

The complexity is now dominated by the computation of the 2D table Everif (m1, v2), which
contains O(n2) entries, and each entry depends on at most n other entries that are already com-
puted. Hence, the overall complexity of the algorithm is O(n3) in time and O(n2) in space.

2.4. With partial veri�cations

It may be bene�cial to further add partial veri�cations between two guaranteed veri�cations.
The intuitive idea would be to add yet another level to the dynamic programming algorithm,
and to replace Ecomp(m1, v1, v2) in Equation (1) by a call to a function E(intuitive)

partial (m1, v1, p2, v2),
with p2 = v2, which would compute the optimal expected time needed to execute all the tasks
from Tv1+1 to Tp2 successfully (accounting for errors and re-executions) and add further partial
veri�cations between v1 and p2.

However, while the dynamic programming approach was rather intuitive with guaranteed ver-
i�cations, the problem becomes much harder when partial veri�cations come into play. Indeed,
while computing E(intuitive)

partial (m1, v1, p2, v2), there is a probability g that an error remains unde-
tected after p2. When this happens, we need to account for the time lost executing the following
tasks until the error is eventually detected by the subsequent partial veri�cations, or in the worst
case by the guaranteed veri�cation at v2. This is only possible if we know the optimal positions of
the partial veri�cations between p2 and v2. This requires the dynamic programming algorithm to
�rst compute the values on the right of p2, hence progressing the opposite way as what has been
done so far.

In other words, instead of calling E(intuitive)
partial (m1, v1, p2, v2) (with p2 = v2) on the �rst call to

place additional partial veri�cations between v1 and p2 (on the left of p2), we now call Epartial(m1, v1, p1, v2)
(with p1 = v1 on the �rst call) to place additional partial veri�cations between p1 and v2 (on the
right of p1), as illustrated in Figure 4. Epartial(m1, v1, p1, v2) is then the optimal expected time
needed to execute all the tasks from Tp1+1 to Tv2 , where Tp1 is followed by a partial veri�cation
(with the exception of the �rst call where p1 = v1) and Tv2 is followed by a guaranteed veri�cation,
knowing the position of the last memory checkpoint at m1 and the position of the last guaranteed
veri�cation at v1.

However, this generates another problem: when an error occurs between p1 and v2, we need
to account for the time lost re-executing all tasks between m1 and v1 (which is already computed
in Everif (m1, v1)) and from v1 to p1, which is only possible if we know the optimal positions
of the partial veri�cations between v1 and p1 (on the left of p1). Since we are now solving the
sub-problems on the right of p1 �rst, we do not know these locations yet.

There is still hope. We make the following simple observation about the re-execution cost:
if an error occurs between p1 and v2, or occurs earlier and is not detected by p1, we will re-
execute tasks between m1 and v1, and between v1 and p1, regardless of the number and positions
of partial veri�cations between p1 and v2. Indeed, the error will be detected either sooner by a
partial veri�cation, or later by the guaranteed veri�cation after Tv2 . In other words, the expected
number of times that tasks between v1 and p1 are re-executed due to errors between p1 and v2

does not depend on the number and positions of partial veri�cations between p1 and v2: the only
thing that matters is that the error will be detected eventually, and the task will be re-executed.

This leads us to the following approach: while deciding the optimal positions of partial veri�-
cations between p1 and v2, we can ignore the re-execution cost of tasks between v1 and p1: these
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tasks will be re-executed the same number of times in expectation, regardless of the decision we
make here, and the total re-execution cost due to errors between p1 and v2 is only a�ected by the
positions of p1 and v2. Therefore, we account for this cost later, while deciding the optimal position
of p2 between p1 and v2, knowing how many times we will execute (and re-execute) tasks between
p1 and p2 in total (see Lemma 1 for additional details), e�ectively making Epartial(m1, v1, p1, v2)
an independent subproblem.

Altogether, the following theorem presents a sophisticated dynamic programming algorithm
when using partial veri�cations:

Theorem 3. The optimal solution to the Silent problem while using partial veri�cations can be
obtained using a dynamic programming algorithm in O(n5) time and O(n4) space, where n is the
number of tasks in the chain.

The remainder of this section is devoted to proving this theorem. The �rst two levels of this
dynamic programming algorithm, i.e., placing memory checkpoints and guaranteed veri�cations,
are exactly the same as the ones presented in Theorem 2, except that we replace the call to
Ecomp(m1, v1, v2) by a call to Epartial(m1, v1, v1, v2), as we did before with guaranteed veri�cations
between memory checkpoints (see Section 2.3.1). The following describes the additional steps
required in order to place partial veri�cations.

2.4.1. Placing partial veri�cations

Let Epartial(m1, v1, p1, v2) denote the optimal expected time needed to execute all the tasks
from Tp1+1 to Tv2 , where Tp1 is followed by a partial veri�cation (with the exception of the �rst
call where p1 = v1) and Tv2 is followed by a guaranteed veri�cation, knowing the position of the
last memory checkpoint at m1 and the position of the last guaranteed veri�cation at v1.

This is yet another level of dynamic programming: suppose that m1 = v1 = 0 and v2 = n, the
goal is to compute Epartial(0, 0, n, n),Epartial(0, 0, n−1, n), . . . ,Epartial(0, 0, 0, n), in this particular
order (which is mandatory as shown below in Section 2.4.2) so that at each step, we can reuse all
previously computed optimal results. Clearly, we will have to solve this problem O(n3) times, for
all possible 0 ≤ m1 ≤ v1 < v2 ≤ n.

Similarly as what was done before, we compute Epartial(m1, v1, p1, v2) by deciding where to
place an additional partial veri�cation between tasks Tp1+1 and Tv2 , and we can write:

Epartial(m1, v1, p1, v2) = min
p1<p2≤v2

{
Ecomp(m1, v1, p1, p2, v2) + Epartial(m1, v1, p2, v2)

}
,

where Ecomp(m1, v1, p1, p2, v2) denotes the expected time needed to successfully execute all the
tasks from Tp1+1 to Tp2 , and the initialization is:

Epartial(m1, v1, v2, v2) = 0 ,

because there is no task to execute and no more room for addition partial veri�cations.

2.4.2. Computing Ecomp(m1, v1, p1, p2, v2)

Recall that Ecomp(m1, v1, p1, p2, v2) denotes the expected time needed to successfully execute
all the tasks from Tp1+1 to Tp2 , accounting for the time lost due to errors and re-executions, with
no undetected silent error after Tp2 , knowing that the last memory checkpoint is after Tm1 , the last
guaranteed veri�cation is after Tv1 , and the next guaranteed veri�cation is after Tv2 . In order to
compute Ecomp(m1, v1, p1, p2, v2), we need to introduce Eleft(v1, p1), the expected time needed to
successfully execute tasks Tv1+1 to Tp1 , and Eright(m1, v1, p2, v2), the expected time lost executing
the tasks following Tp2 , knowing that there is an undetected silent error. Note that in the worst
scenario, a silent error will always be detected by the guaranteed veri�cation after Tv2 .

Figure 4 shows all the tasks involved in the computation between two partial veri�cations at
p1 and p2. Intuitively, the execution goes as follows. First, we execute all the tasks from Tp1+1

up to the next partial veri�cation after Tp2 , and we pay W]p1,p2]. Then, we add the cost V for the
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T0 V ∗CM . . . Tm1 V
∗CMTm1+1

. . . Tv1 V ∗Tv1+1
. . . Tp1 VTp1+1

. . . Tp2 VTp2+1
. . . Tv2 V ∗ . . .

Eleft(v1, p1) E−comp(m1, v1, p1, p2, v2) Eright(m1, v1, p2, v2)

Epartial(m1, v1, p1, v2)

Everif (m1, v2)

Everif (m1, v1)

Figure 4: Placing partial veri�cations: m1, v1, p1 and v2 are �xed, and we try all possible locations for p2. Here, both
Everif (m1, v1) and Eright(m1, v1, p2, v2), with v1 < p2 ≤ v2, have already been computed, which makes it possible
to compute Ecomp(m1, v1, p1, p2, v2), and then Epartial(m1, v1, p1, v2). Note that we do not need Eleft(v1, p1) (see
Section 2.4 and Lemma 1).

partial veri�cation, and there is a probability ps]p1,p2] of having a silent error. On the one hand,
there is a probability 1 − g to detect the error right after the partial veri�cation at Tp2 . In this
case, we pay a recovery cost RM from the last memory checkpoint and re-execute the tasks from
there by calling Everif (m1, v1), followed by Eleft(v1, p1) and Ecomp(m1, v1, p1, p2, v2). However, if
the error is not detected (with probability g), we also account for the cost of re-executing tasks
from the last memory checkpoint until Tp2 , but we further use Eright(m1, v1, p2, v2) to compute the
expected time lost executing the tasks following Tp2 , knowing that there is an undetected silent
error. In this case, the recovery cost will be accounted for in Eright. Therefore, we have:

Ecomp(m1, v1, p1, p2, v2) = W]p1,p2] + V + ps]p1,p2]

(
Everif (m1, v1)

+ Eleft(v1, p1) + Ecomp(m1, v1, p1, p2, v2)

+ (1− g)RM + gEright(m1, v1, p2, v2)
)
.

Simplifying the equation above, we obtain:

Ecomp(m1, v1, p1, p2, v2) = eλsW]p1,p2]
(
W]p1,p2] + V

)
+
(
eλsW]p1,p2] − 1

) (
Everif (m1, v1) + Eleft(v1, p1)

)
+
(
eλsW]p1,p2] − 1

) (
(1− g)RM + gEright(m1, v1, p2, v2)

)
. (2)

Now, due to the order in which we solve the subproblems, both Everif (m1, v1) and Epartial(m1, v1, p2, v2)
have already been computed, meaning that we can get the optimal positions of partial veri�ca-
tions between Tp2+1 and Tv2 , which makes it possible to compute Eright(m1, v1, p2, v2). However,
because we solve the subproblems the opposite way as what was done so far, we do not know (yet)
the optimal positions of partial veri�cations between Tv1 and Tp1 , which are required to compute
Eleft(v1, p1).

Instead, we remove the term (
eλsWp1,p2 − 1

)
Eleft(v1, p1)

from Equation (2), and introduce the modi�ed expression of Ecomp, denoted by E−comp, as follows:

E−comp(m1, v1, p1, p2, v2) = eλsW]p1,p2]
(
W]p1,p2] + V

)
+
(
eλsW]p1,p2] − 1

)
Everif (m1, v1)

+
(
eλsW]p1,p2] − 1

) (
(1− g)RM + gEright(m1, v1, p2, v2)

)
. (3)

Then, to account for the missing Eleft, we make use of Lemma 1, which shows that, for any
number and position of partial veri�cations between Tp2+1 and Tv2 , E−comp(m1, v1, p1, p2, v2) is
executed eλsW]p2,v2] times in expectation. As explained before, the intuition behind this result
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is that the amount of time tasks Tv1 to Tp1 will be re-executed due to errors in Tp1 to Tv2 does
not depend upon the positions of intermediate partial veri�cations (e.g., p2). For every error that
occurs between Tp1 and Tv2 , these tasks will be re-executed regardless of the position of p2 (or any
other partial veri�cations between Tp1 and Tv2). Hence, instead of accounting for the execution
of Tp1 to Tp2 just once, we now account for all the times we have to execute, and re-execute them
due to errors between Tp2 and Tv2 , and we obtain:

Epartial(m1, v1, p1, v2) = min
p1<p2≤v2

{
E−comp(m1, v1, p1, p2, v2) · eλsW]p2,v2] + Epartial(m1, v1, p2, v2)

}
,

(4)
which is initialized by:

Epartial(m1, v1, v2, v2) = 0 ;

E−comp(m1, v1, p1, v2, v2) = eλsW]p1,v2]
(
W]p1,v2] + V ∗

)
+
(
eλsW]p1,v2] − 1

)
Everif (m1, v1)

+
(
eλsW]p1,v2] − 1

)
RM ,

because there is no task to execute and no more room for additional partial veri�cations, and
because when computing E−comp(m1, v1, p1, v2, v2) with p2 = v2, we need to account for the cost
of the guaranteed veri�cation V ∗ instead of the partial veri�cation. Indeed, Lemma 1 (see below)
proves that for any number of partial veri�cations between p2 and v2, E−comp(m1, v1, p1, p2, v2) is
executed eλsW]p2,v2] times in expectation.

2.4.3. Computing Eright(m1, v1, p1, v2)

Finally, in order to get E−comp(m1, v1, p1, v2, v2), we still need compute Eright(m1, v1, p1, v2),
the optimal expected time lost executing the tasks Tp1+1 to Tv2 , assuming that there is an unde-
tected silent error in this interval. This computation uses p2, the optimal position of the partial
veri�cation immediately following p1, and it is computed by the dynamic programming algorithm.
Indeed, the partial veri�cation after Tp2 may or may not detect the error. If the error is detected,
we lose W]p1,p2] +V +RM time, while we use Eright(m1, v1, p2, v2) if the error remains undetected.
Altogether, we have:

Eright(m1, v1, p1, v2) = W]p1,p2] + V + (1− g)RM + gEright(m1, v1, p2, v2) , (5)

where p2 is the optimal position of the next partial veri�cation knowing that there is a partial
veri�cation after Tp1 and is obtained by backtracking the last step as follows:

p2 = arg min
p1<p2≤v2

{
E−comp(m1, v1, p1, p2, v2) · eλsW]p2,v2] + Epartial(m1, v1, p2, v2)

}
.

Note that both E−comp(m1, v1, p1, p2, v2), which only requires Eright(m1, v1, p2, v2) to be known,
and Epartial(m1, v1, p2, v2) have already been computed by Epartial(m1, v1, p1, v2). In addition,
recall that the time needed to re-execute the tasks after a recovery is not included here.

The initialization is as follows:

Eright(m1, v1, v2, v2) = RM , if p1 = p2 = v2

Eright(m1, v1, p1, v2) = W]p1,p2] + V ∗ +RM , if p1 < p2 and p2 = v2

Indeed, when p2 = v2 there is no task to execute after Tp2 , and if there was a silent error, it is
immediately detected at v2 (by guaranteed veri�cation), and we just pay RM . Then, when p1 < p2

and p2 = v2, if an error goes undetected after p1, we will execute tasks from Tp2 to Tv2 , and we
need to take into account the cost of the guaranteed veri�cation V ∗ at v2. Again, the error is
detected at v2 and we pay RM .
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2.4.4. Complexity

Clearly, the complexity is now dominated by the computation of the table Epartial(m1, v1, p1, v2),
which contains O(n4) entries, and each entry depends on at most n other entries that are already
computed. Hence, the overall complexity of the algorithm is O(n5) in time and O(n4) in space.

Finally, the following presents the formalization and proof of Lemma 1, which has been used
in proving Theorem 3.

Lemma 1. For any number of partial veri�cations between p2 and v2, E−comp(m1, v1, p1, p2, v2) is

executed eλsW]p2,v2] times in expectation.

Proof. Looking at Equation (3), if there is no partial veri�cation after p2, then we must exe-
cute E−comp(m1, v1, p1, p2, v2) at least once when progressing within the computation. Account-
ing for the term Eleft that was suppressed from the �nal Ecomp(m1, v1, p2, v2, v2), we must re-
execute E−comp(m1, v1, p1, p2, v2) an additional eλsW]p2,v2] − 1 times due to errors occurring in
Ecomp(m1, v1, p2, v2, v2). Overall, the expected number of times E−comp(m1, v1, p1, p2, v2) is exe-
cuted will be

1 + (eλsW]p2,v2] − 1) = eλsW]p2,v2] .

Now, with one intermediate partial veri�cation p3 between p2 and v2, the same reasoning
shows that E−comp(m1, v1, p2, p3, v2) must be executed eλsW]p3,v2] times in expectation. Therefore,
E−comp(m1, v1, p1, p2, v2) must be executed once, coming from the initial execution, plus an addi-
tional eλsW]p2,p3] − 1 times due to the re-executions coming from the Eleft term suppressed from
Ecomp(m1, v1, p2, p3, v2), which is itself executed eλsW]p3,v2] times. Finally, we must account for the
eλsW]p3,v2] − 1 times coming from the last Ecomp(m1, v1, p3, v2, v2) as well. Overall, the expected
number of times E−comp(m1, v1, p1, p2, v2) is executed will be

1 +
(
eλsW]p2,p3] − 1

)
· eλsW]p3,v2] +

(
eλsW]p3,v2] − 1

)
= eλsW]p2,v2] .

It is straightforward to extend this argument to any number of intervals by induction, assuming
that it is true for i intermediate partial veri�cations p1, . . . , pi, followed by a guaranteed veri�ca-
tion, and adding a partial veri�cation pi+1 between pi and v2. The same reasoning holds, which
concludes the proof.

3. Multi-level checkpointing for fail-stop errors

In this section, we present a multi-level dynamic programming algorithm to decide which
tasks to checkpoint and at which levels when dealing with fail-stop errors. We �rst introduce the
application and checkpointing models in Section 3.1 before presenting the dynamic programming
algorithm in Section 3.2.

3.1. Model

As before, we consider a chain T1 → T2 → · · · → Tn of n tasks that execute on a large-scale
platform subject to k levels of fail-stop errors. Recall that the weight wi of task Ti is known to
the algorithm, and W]i,j] =

∑j
p=i+1 wp denotes the total weight of tasks Ti+1 to Tj for any i < j.

Errors of di�erent levels are assumed to be independent, and their arrivals follow Poisson process
with error rate λ` for level `, where 1 ≤ ` ≤ k. There are correspondingly k levels of checkpoints
available, and each level ` is associated with a checkpointing cost C(`) and a recovery cost R(`).
Typically, error rates are decreasing and checkpoint/recovery costs are increasing when we go to
higher levels: λ1 ≥ λ2 ≥ · · · ≥ λk, C(1) ≤ C(2) ≤ · · · ≤ C(k), and R(1) ≤ R(2) ≤ · · · ≤ R(k). A
level ` error destroys all the checkpoints of lower levels (from 1 to `− 1) and we need to roll back
to a checkpoint of level ` or higher for recovery. Similarly, a recovery from a level ` checkpoint will
restore data from all the lower levels. We assume that the costs of checkpointing and recovery are
uniform across di�erent tasks, and that they are protected from faults (i.e., errors only strike the
computations).
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T0 C(k) T1
. . . Ti C(k) Ti+1

. . . Tck C(k) . . .

E(k)
rec(i) E(k−1)

rec (i, ck)

E(k)
rec(ck)

Figure 5: Placing checkpoints at level k: ck is �xed, and we try all possible locations i for an additional checkpoint

at level k between T0 and Tck . Note that all subproblems E(k)
rec(i), with 0 ≤ i < ck, have already been computed,

while E(k−1)
rec (i, ck) is computed by yet another dynamic programming level to be described later (see Figure 6).

For convenience, we add again before task T1 a virtual task T0, which is checkpointed at all
levels, and whose checkpointing and recovery costs are always zero. This accounts for the fact
that it is always possible to restart the application from scratch (i.e., recover from T0) with no
extra cost. Furthermore, we assume that the last task Tn is also always checkpointed at all levels
in order to save the �nal outcome of the computation.

The Multilevel problem consists in �nding the optimal set of tasks that should be check-
pointed at each level in order to minimize the total expected execution time of the task chain,
accounting for failures and re-executions.

3.2. Dynamic programming algorithm

The main di�erence between fail-stop and silent error is the detection latency: fail-stop errors
typically occur in the middle of the computation, causing the application to crash immediately
and losing some data. From the algorithmic perspective, it has two implications: (i) when an
error occurs, we only need to account for the time lost since the last available checkpoint; and
(ii) we must recover from the right checkpoint level, which depends on the type of the error. Our
approach for the Multilevel problem remains similar to the algorithm presented in Section 2.2
by using dynamic programming:

Theorem 4. The optimal solution to the Multilevel problem can be obtained using a dynamic
programming algorithm in O(nk+1) time and O(nk) space, where n is the number of tasks in the
chain, and k is the number of checkpointing levels available.

The dynamic programming algorithm consists of k nested levels. The remainder of this section
is devoted to proving this theorem by detailing how the k levels of checkpoints are placed.

3.2.1. Placing checkpoints at level k

We start with the highest and most expensive level k. Let E(k)
rec(ck) denote the optimal expected

execution time to successfully execute all tasks from T1 to Tck (included), where ck denotes the
index of a task whose output is saved with a level-k checkpoint. Intuitively, we want to obtain:

E(k)
rec(n),

which is the optimal expected execution time to successfully execute all the tasks in the chain.
Backtracking can then be used to get the corresponding optimal set of tasks to checkpoint.

In order to compute E(k)
rec(ck), we need to decide which tasks to checkpoint at level k between

tasks T0 and Tck (remember that T0 is always checkpointed at level k). To this end, we consider
each of these tasks as a potential candidate for the last checkpoint at level k before Tck , and return
the minimum expected execution time as follows (see Figure 5):

E(k)
rec(ck) = min

0≤i<ck

{
E(k)
rec(i) + E(k−1)

rec (i, ck)
}

+ C(k) .

For each task Ti, we �rst call E(k)
rec(i) recursively to decide which additional tasks should be

checkpointed at level k, between task T1 and the newly checkpointed task Ti. Then, we compute
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. . . Tck C(k) Tck+1 . . . Ti C(k−1) Ti+1
. . . Tck−1 C(k−1) C(k) . . .

E(k−1)
rec (ck, i) E(k−2)

rec (ck, i, ck−1)

E(k−1)
rec (ck, ck−1)

Figure 6: Placing checkpoints at level k−1: ck and ck−1 are �xed, and we try possible locations i for an additional

checkpoint between Tck and Tck−1 . Again, all subproblems E(k−1)
rec (ck, i), with ck ≤ i < ck−1, have already been

computed, while E(k−2)
rec (ck, i, ck−1) is computed by the next level of dynamic programming level.

the expected execution time between tasks Ti and Tck by calling the next level function E(k−1)
rec (i, ck)

that decides which tasks to checkpoint at level k−1, knowing that both tasks Ti and Tck are already
checkpointed at level k. Finally, we account for the level-k checkpointing cost C(k) after task Tck .

3.2.2. Placing checkpoints at level k − 1.

Now, let E(k−1)
rec (ck, ck−1) denote the optimal expected execution time needed to successfully

execute all the tasks from Tck to Tck−1
(included), where ck denotes the position of the last

checkpoint at level k, and ck−1 denotes the position of the next level k − 1 checkpoint. Note
that the �rst time we call this function (while computing E(k)

rec(ck) above), ck−1 (a.k.a. ck above)
actually denotes the position the next level-k checkpoint, which by construction always includes
a level k − 1 checkpoint as well, and that is accounted for in the equation below. Similarly to the
level-k function, we try all tasks Ti between Tck and Tck−1

(included) for the last checkpoint at
level k − 1, so that we can write (see Figure 6):

E(k−1)
rec (ck, ck−1) = min

ck≤i<ck−1

{
E(k−1)
rec (ck, i) + E(k−2)

rec (ck, i, ck−1)
}

+ C(k−1) .

We �rst call E(k−1)
rec (ck, i) recursively between tasks Tck and Ti to place additional checkpoints at

level k− 1, then call the function E(k−2)
rec (ck, i, ck−1) to place level k− 2 checkpoints between tasks

Ti and Tck−1
, and �nally account for the level k − 1 checkpointing cost C(k−1) after task Tck−1

.
Note that Tck will always be checkpointed at level k − 1, in addition of the level-k checkpoint
that was already placed before. In fact, by following this approach, we guarantee that a high-level
checkpoint always includes all the lower-level checkpoints as well.

3.2.3. Placing checkpoints at level `

The function for placing checkpoints at level k−2 would now contain three parameters, because
we need to remember both ck and ck−1, the positions of the last checkpoint at level k and level
k − 1, respectively, as well as ck−2, the position of the next checkpoint at the current level k − 2.
This is because in case an error from level k or level k − 1 strikes, we need to know which is the
nearest available checkpoint to recover from.

In general, let E(`)
rec(ck, . . . , c`+1, c`) denote the optimal expected execution time needed to

execute tasks Tc`+1+1 to Tc` (included), where c`+1 is the position of the last checkpoint at level
`+ 1 and c` is the position of the next level-` checkpoint. Similarly to the functions at level k and
level k − 1, the goal of this function is to place additional level-` checkpoints between tasks Tc`+1

and Tc` . We denote by i the position of the newly added checkpoint at current level `, and we try
all possible positions between c`+1 and c`. Hence, we derive:

E(`)
rec(ck, . . . , c`+1, c`) = min

c`+1≤i<c`

{
E(`)
rec(ck, . . . , c`+1, i) + E(`−1)

rec (ck, . . . , c`+1, i, c`)
}

+ C(`) . (6)

For each candidate Ti, we �rst call E(`)
rec(ck, . . . , c`+1, i) to place additional level-` checkpoints

between tasks Tc`+1
and Ti. Then, we call E(`−1)

rec (ck, . . . , c`+1, i, c`) to place additional level `− 1
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checkpoints between tasks Ti and Tc` . Finally, we account for the level-` checkpointing cost C(`)

after task Tc` .

3.2.4. Initialization

To initialize the dynamic program at each level `, we set:

E(`)
rec(ck, . . . , c`+1, c`+1) = 0 ,

which occurs once when i = c`+1 in Equation (6); there is no task to execute, and the cost of
the checkpoint after Ti has been accounted for already. Then, when the last level is reached, i.e.,
when ` = 1, there is no more checkpointing level to try, and we set:

E(0)
rec(ck, . . . , c2, c1, c1′) = Ecomp(ck, . . . , c2, c1, c1′) ,

where Ecomp(ck, . . . , c2, c1, c1′) denotes the expected execution time needed to execute tasks Tc1+1

to Tc1′ (included), with no additional intermediate checkpoints in between.

3.2.5. Computing Ecomp(ck, . . . , c1, c1′)
Given the positions of the checkpoints, we can now compute the actual expected execution time

needed to successfully execute the tasks between any two consecutive level-1 checkpoints. We make
use of the following well-known properties of independent Poisson processes [31, Chapter 2.3].

Property 1. During the execution of a sequence of tasks with total work W , let X` denote the
time when the �rst level-` error strikes. Thus, X` is a random variable following exponential
distribution with parameter λ`, for all ` = 1, 2, . . . , k.

(1) Let X denote the time when the �rst error (of any level) strikes. We have X = min{X1, X2, . . . , Xk},
which follows exponential distribution with parameter Λ =

∑k
`=1 λ`. The probability of having

an error (from any level) during the execution is therefore P (X ≤W ) = 1− e−ΛW .

(2) Given that an error (from any level) strikes during the execution of the tasks, the probability
that the error belongs to a particular level is proportional to the error rate of that level, i.e.,
P (X = X`|X ≤W ) = λ`

Λ , for all ` = 1, 2, . . . , k.

Recall that W]c1,c1′ ]
=
∑c1′
i=c1+1 wi denotes the total computational load between tasks Tc1+1

and Tc1′ . Hence, with probability pf]c1,c1′ ] = 1− e−Λ·W]c1,c
1′ ] , at least one fail-stop error (from any

level) will occur during the execution of tasks Tc1+1 to Tc1′ (included). When this happens, we �rst
need to account for the time lost during the execution (up to the error), denoted by T lost

]c1,c1′ ]
. Then,

we need to roll back to the nearest checkpoint, depending on the level of the error. For example,
with probability λ3

Λ , we need to recover from the last level-3 checkpoint, and we pay R(3), the cost
to recover from task Tc3 using level-3 recovery. When the recovery is done, we need to re-execute
all the tasks, �rst from Tc3+1 to Tc2 , then from Tc2+1 to Tc1 , and �nally from Tc1 to Tc1′ again.
By construction, there is no other level-3 checkpoint between Tc3 and Tc2 , so the expected time to
re-execute all the tasks up to the next level-2 checkpoint, that is from tasks Tc3 to Tc2 , is simply
E(2)
rec(ck, . . . , c3, c2). Then, we proceed by re-executing the tasks up to the next level-1 checkpoint,

which takes E(1)
rec(ck, . . . , c2, c1) time, at which point we can just call Ecomp(c1, . . . , c1, c1′) again, to

restart this whole process until the execution of tasks Tc1 to Tc1′ is eventually successful. When no

error occurs, which happens with probability 1−pf]c1,c1′ ], we just need to pay the cost of executing
all the tasks without error, i.e., W]c1,c1′ ]

. Therefore, we derive:
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Ecomp(ck, . . . , c1, c1′) =
(

1− pf]c1,c1′ ]
)
W]c1,c1′ ]

+ pf]c1,c1′ ]

(
T lost

]c1,c1′ ]

+
λ1

Λ

(
R(1) + Ecomp(ck, . . . , c1, c1′)

)
+
λ2

Λ

(
R(2) + E(1)

rec(ck, . . . , c2, c1) + Ecomp(ck, . . . , c1, c1′)
)

...

+
λk−1

Λ

(
R(k−1) +

k−1∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1) + Ecomp(ck, . . . , c1, c1′)

)
+
λk
Λ

(
R(k) +

k∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1) + Ecomp(ck, . . . , c1, c1′)

))
.

Simplifying the equation above, we can obtain:

Ecomp(ck, . . . , c1, c1′) = e−Λ·W]c1,c
1′ ]W]c1,c1′ ]

+
(
1− e−Λ·W]c1,c

1′ ]
)(
T lost

]c1,c1′ ]

+

k∑
h=1

λh
Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Ecomp(ck, . . . , c1, c1′)

)
. (7)

In order to compute the expected execution time, we need to compute T lost
]c1,c1′ ]

, which is the
expected time loss due to a fail-stop error occurring during the execution of tasks Tc1 to Tc1′ . We
obtain:

T lost
]c1,c1′ ]

=

∫ ∞
0

xP(X = x|X < W]c1,c1′ ]
)dx

=
1

P(X < W]c1,c1′ ]
)

∫ W]c1,c
1′ ]

0

xP(X = x)dx ,

where P(X = x) denotes the probability that a fail-stop error strikes at time x. By de�nition, we
have P(X = x) = Λe−Λx and P(X < W]c1,c1′ ]

) = 1− e−ΛW]c1,c
1′ ] . Integrating by parts, we have:

T lost
]c1,c1′ ]

=
1

Λ
− W]c1,c1′ ]

eΛW]c1,c
1′ ] − 1

. (8)

Now, substituting T lost
]c1,c1′ ]

above into Equation (7), and solving for Ecomp(ck, . . . , c1, c1′), we obtain:

Ecomp(ck, . . . , c1, c1′) =
eΛ·W]c1,c

1′ ] − 1

Λ

(
1 +

k∑
h=1

λh

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

))
.

3.2.6. Complexity

The complexity is dominated by the computation of the table E(1)
rec(ck, . . . , c2, c1), which con-

tains nk entries. In order to compute each entry, a minimum over at most n other entries (that
are already computed) is required. All tables are computed in a bottom-up fashion, from the left
to the right of the intervals. Hence, the overall complexity of the algorithm is O(nk+1).
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4. Dealing with both fail-stop and silent errors

On real-life platforms, fail-stop errors and silent errors coexist, and thus resilience algorithms
must be able to cope with both error sources simultaneously. In this section, we describe a multi-
level dynamic programming algorithm to address this challenging problem.

The new algorithm is a combination of the dynamic programming algorithms presented in the
preceding sections. In particular, we place k levels of disk2 checkpoints to deal with di�erent
fail-stop errors, followed by another level of memory checkpoints, and additional veri�cations
(guaranteed or partial), to deal with silent errors. We call this problem the Multilevel-Silent

problem, and the objective is to �nd the optimal positions in the task chain to place di�erent
checkpoints (disk and memory) as well as veri�cations (guaranteed and partial) to minimize the
expected execution time. The following theorem presents the solution to this problem.

Theorem 5. The optimal solution to the Multilevel-Silent problem can be obtained using a
dynamic programming algorithm in O(nk+5) time and O(nk+4) space, where n is the number of
tasks in the chain and k is number of checkpointing levels to handle fail-stop errors.

Proof. The dynamic programming for fail-stop errors is exactly the same as the one shown in
Section 3.2, up to the call to the function E(0)

rec(ck, . . . , c2, c1, c1′), which is invoked after placing
the last level-1 checkpoints. Now, in order to handle silent errors, we set:

E(0)
rec(ck, . . . , c2, c1, c1′) = Emem(ck, . . . , c1, c1′) ,

where

Emem(ck, . . . , c1,m2) = min
c1≤m1<m2

{
Emem(ck, . . . , c1,m1) + Everif (ck, . . . , c1,m1,m2)

}
+ CM ,

with m2 = c1′ when �rst called from Emem(ck, . . . , c1,m2), and

Everif (ck, . . . , c1,m1, v2) = min
m1≤v1<v2

{
Everif (ck, . . . , c1,m1, v1) + Epartial(ck, . . . , c1,m1, v1, v2, v2)

}
,

with v2 = m2 when �rst called from Everif (ck, . . . , c1,m1, v2). Overall, Emem(ck, . . . , c1,m2) and
Everif (ck, . . . , c1,m1, v2) remain the same as in Section 2.4, except for the fact that we now need
to remember the position of the last checkpoint at each level, in case a fail-stop error occurs during
the execution of tasks Tv1+1 to Tv2 . As for the initialization, we set Emem(ck, . . . , c1, c1) = 0 and
Everif (ck, . . . , c1,m1,m1) = 0, which occur once when m1 = c1 and v1 = m1, respectively. In both
cases, there is no task to execute, and the cost of the checkpoint/veri�cation has already been
accounted for.

Placing partial veri�cations. Similarly, the function to place additional partial veri�ca-
tions becomes Epartial(ck, . . . , c1,m1, v1, p1, v2), and the expected number of times the function
E−comp(ck, . . . , c1,m1, v1, p1, p2, v2) is executed must now account for both silent errors and fail-
stop errors. Hence, we can write:

Epartial(ck, . . . , c1,m1, v1, p1, v2) = min
p1<p2≤v2

{
E−comp(ck, . . . , c1,m1, v1, p1, p2, v2) · e(λs+Λ)W]p2,v2]

+ Epartial(ck, . . . , c1,m1, v1, p2, v2)
}
.

Computing E−comp(ck, . . . , c1,m1, v1, p1, p2, v2). On the one hand, if a fail-stop error occurs

with probability pf]p1,p2] = 1 − e−Λ·W]p1,p2] , we can apply the same method as in Section 3.
We recover from the nearest checkpoint depending on the error level, and we re-execute all the

2By disk, we mean stable storage devices or advanced checkpointing mechanisms (e.g., partner-copy [7]) that
can survive various sources of fail-stop errors, in opposition to memory, which can only survive silent errors.
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tasks up to E(1)
rec(ck, . . . , c1), then we call Emem(ck, . . . , c1,m1), followed by a call to the function

Everif (ck, . . . , c1,m1, v1) to account for the time needed to re-execute the tasks between the last
memory checkpoint after Tm1 to the next guaranteed veri�cation after Tv1 , and �nally we are left
with the remaining tasks between Tv1+1 and Tp1 , and we call E−comp(ck, . . . , c1,m1, v1, p1, p2, v2)

again. On the other hand, with probability (1 − pfp1,p2), there is no fail-stop error. In that case,
we execute all the tasks from Tp1+1 to the next veri�cation after Tp2 , as was done in Section 2.4.
Overall, we can write:

E−comp(ck, . . . , c1,m1, v1, p1, p2, v2) =

pf]p1,p2]

(
T lost

]p1,p2] +

k∑
h=1

λh
Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1) + Everif (ck, . . . , c1,m1, v1)

+ E−comp(ck, . . . , c1,m1, v1, p1, p2, v2)

)

+
(

1− pf]p1,p2]

)(
W]p1,p2] + V + ps]p1,p2]

(
Everif (ck, . . . , c1,m1, v1)

+ E−comp(ck, . . . , c1,m1, v1, p1, p2, v2)

+ (1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)
))

.

Simplifying the equation above and solving for E−comp, we obtain:

E−comp(ck, . . . , c1,m1, v1, p1, p2, v2) =

+ eλsW]p1,p2]

(
eΛW]p1,p2] − 1

Λ
+ V

)
+ eλsW]p1,p2]

(
eΛW]p1,p2] − 1

)( k∑
h=1

λh
Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1)

)
+
(
e(λs+Λ)W]p1,p2] − 1

)
Everif (ck, . . . , c1,m1, v1)

+
(
eλsW]p1,p2] − 1

) (
(1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)

)
.

Computing Eright(ck, . . . , c1,m1, v1, p1, v2). Remember that Eright(ck, . . . , c1,m1, v1, p1, v2) de-
notes the expected time lost executing the tasks Tp1+1 to Tv2 , assuming that there was a silent
error in this interval. Equation (5) already accounts for the time lost in that case, but only
when there is no fail-stop error. Similarly to E−comp above, we consider fail-stop errors be-
tween Tp1+1 and Tp2 , because fail-stop errors between Tp2+1 and Tv2 will be accounted for in
Eright(ck, . . . , c1,m1, v1, p2, v2). Note that even if we know that there is a silent error in the inter-
val, we may need to recover from a fail-stop error if it strikes before the silent error is detected.
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Altogether, we have:

Eright(ck, . . . , c1,m1, v1, p1, v2) =

pf]p1,p2]

(
T lost

]p1,p2] +

k∑
h=1

λh
Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1)

)
+
(

1− pf]p1,p2]

)(
W]p1,p2] + V + (1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)

)
.

Finally, simplifying the equation above, we obtain:

Eright(ck, . . . , c1,m1, v1, p1, v2) =(
1− e−ΛW]p1,p2]

)( 1

Λ
+

k∑
h=1

λh
Λ

(
R(h) +

h∑
`=2

E(`−1)
rec (ck, . . . , c`, c`−1)

)
+ Emem(ck, . . . , c1,m1)

)
+ e−ΛW]p1,p2]

(
V + (1− g)RM + gEright(ck, . . . , c1,m1, v1, p2, v2)

)
.

The initialization remains Eright(ck, . . . , c1,m1, v1, v2, v2) = RM .

Complexity. The complexity is dominated by the computation of the dynamic programming
table Epartial(ck, . . . , c1,m1, v1, p1, v2), which contains O(nk+4) entries, and each entry depends
on at most n other entries that are already computed. Therefore, the complexity of the dynamic
programming algorithm to handle both fail-stop and silent errors is O(nk+5).

We point out that, in practical systems, the number of checkpointing levels k is generally quite
small and rarely exceeds 3 or 4 [38, 7], while linear application work�ows rarely exceed a few tens
of tasks. Hence, our algorithm can be e�ciently applied to these practical scenarios in reasonable
time and space.

5. Performance evaluation

In this section, we conduct a set of simulations to assess the relative e�ciency of our approach
under practical scenarios. We instantiate the performance model with two di�erent sets of realistic
parameters obtained from the literature. The simulation code is publicly available at http://

graal.ens-lyon.fr/~yrobert/chainmultilevel.zip for interested readers to experiment with
their own parameters.

Simulation setup. We make several assumptions on the input parameters. First, the checkpoint
and recovery costs both depend on size of the the task output �le, and the �nal cost is mostly
determined by the available bandwidth at each level. As such, we make the assumption that the
recovery cost for a given level is equivalent to the corresponding checkpointing cost, i.e., R(i) = C(i)

for 1 ≤ i ≤ k. This is a common assumption [38, 42, 25], even though in practice the recovery
cost can be expected to be smaller than the checkpoint cost [25, 26].

Then, we assume that, similarly, a guaranteed veri�cation must check all the data in memory,
making its cost in the same order as that of a memory checkpoint, i.e., V ∗ = CM . Furthermore,
we assume partial veri�cations similar to those proposed in [5, 6, 14], with very low costs while
o�ering good recalls. In the following, we set V = V ∗/100 and r = 0.8. The total computational
weight is set to be W = 25000 seconds (or W = 3600s in some simulations), and it is distributed
among up to n = 50 tasks in three di�erent patterns shown as follows.

(1) Uniform: all tasks share the same weight W/n, as in matrix multiplication or in some
iterative stencil kernels.

(2) Decrease: task Ti has weight α(n+1− i)2, where α ≈ 3W/n3; this quadratically decreasing
function resembles some dense matrix solvers, e.g., by using LU or QR factorization.
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(3) HighLow : a set of tasks with large weight is followed by a set of tasks with small weight.
In the simulations, we set 10% of the tasks to be large and let them contain 60% of the total
computational weight.

We point out that all these choices are somewhat arbitrary and can easily be modi�ed in the
evaluations; however we believe they represent reasonable values for current and next-generation
HPC applications. We �rst investigate the impact of using guaranteed and partial veri�cations in
Section 5.1, by focusing on a platform with a single level of checkpoints for fail-stop errors. Then,
we study the impact of multi-level checkpointing in Section 5.2.

5.1. Results for two-level checkpointing

In this section, we perform a set of experiments based on the characteristics of four platforms
taken from the literature. We start by analyzing the combined algorithm, but in a somewhat
simpli�ed context, with only one level of checkpoint to deal with fail-stop errors (i.e., k = 1).
We compare three algorithms: (i) a single-level algorithm ADV ∗ with only disk checkpoints to
handle both fail-stop and silent errors (with additional guaranteed veri�cations); (ii) a two-level
algorithm ADMV ∗ with additional memory checkpoints for silent errors; and (iii) the combined
algorithm ADMV using additional partial veri�cations. The optimal positions of veri�cations can
be easily derived for ADV ∗ using a simpli�cation of the proposed dynamic programming algorithm
in Section 4, with k = 1 level of fail-stop errors and no additional memory checkpoints.

Platform settings. Table 1 presents the four platforms used in the simulations and their main
parameters. These platforms have been used to evaluate the Scalable Checkpoint/Restart (SCR)
library by Moody et al. [38], who provide accurate measurements for λf , λs, C(1) and CM using
real applications. Note that in this con�guration, C(1) denotes the cost of checkpointing to disk,
and is referred to as a disk checkpoint below, as opposed to the memory checkpoint, which is done
in RAM. There is an exception with the Coastal platform, on which SSD technology is used for
memory checkpointing; this provides more data space, at the cost of higher checkpointing costs.
In addition, note that the Hera platform has the worst error rates, with a platform MTBF of
12.2 days for fail-stop errors and 3.4 days for silent errors. In comparison, and despite its higher
number of nodes, the Coastal platform features a platform MTBF of 28.8 days for fail-stop errors
and 5.8 days for silent errors.

Set From Platform #Nodes λf λs C(1) CM

(A)

Hera 256 9.46e-7 3.38e-6 300s 15.4s

Moody Atlas 512 5.19e-7 7.78e-6 439s 9.1s

et al. [38] Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s

Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

Table 1: Set of parameters (A) used as input for simulations.

Impact of the number of tasks. The �rst column of Figure 7 presents, for each platform, the
normalized makespan with respect to the error-free execution time for di�erent numbers of tasks
with the Uniform pattern. Note that varying the number of tasks has an impact on both the
size of the tasks and the maximum number of checkpoints and veri�cations that the scheduling
algorithm can place. When the number of tasks is small (e.g., less than 5), the probability of
having an error during the execution (either a fail-stop or a silent) increases quickly (more than
10% on Hera) for a single task. As a result, the application experiences more recoveries and re-
executions with larger tasks, which increases the execution overhead. However, when the number
of tasks is large enough, the size of the tasks becomes small and the probability of having an error
during the execution of one task drops signi�cantly, reducing the recovery and re-execution costs
at the same time.

Single-level algorithm ADV ∗ . The second column of Figure 7 shows the numbers of disk
checkpoints (with associated memory checkpoints) and guaranteed veri�cations used by the ADV ∗
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Figure 7: Performance of the three algorithms on each platform with the Uniform pattern. Each row corresponds
to one platform.
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algorithm on the four platforms and for di�erent numbers of tasks. We observe that a large number
of guaranteed veri�cations is placed by the algorithm while the number of checkpoints remains
relatively small (e.g., less than 5 for all the platforms). This is because checkpoints are costly,
and veri�cations help reduce the amount of time lost due to silent errors. Since veri�cations are
cheaper, the algorithm tends to place as many of them as possible, except when their relative costs
also become high (e.g., on Coastal SSD). In addition, when the number of tasks is large enough
(e.g., n > 30 on Hera), not all tasks need to be veri�ed. Note that there are fewer veri�cations for
n = 40 than for n = 30, while the number of memory checkpoints remain the same. In fact, there
is a threshold (n = 38) after which one veri�cation for one task becomes an overkill. Instead, the
algorithm places one veri�cation every two tasks, resulting in exactly 20 guaranteed veri�cations
(including the ones before each memory checkpoint) at n = 40 tasks.

Two-level algorithm ADMV ∗ . The third column of Figure 7 presents the numbers of disk
checkpoints, memory checkpoints and guaranteed veri�cations used by the ADMV ∗ algorithm on
the four platforms and for di�erent numbers of tasks. We observe that the number of guaranteed
veri�cations remains similar to that placed by the ADV ∗ algorithm. However, the two-level algo-
rithm uses additional memory checkpoints, which drastically reduces the amount of time lost in
re-execution when a silent error is detected. In particular, we observe that the algorithm ADMV ∗

always leads to a better makespan compared to the single-level algorithm ADV ∗ , with an improve-
ment of 2% on Hera and 5% on Atlas, as shown in the �rst column of Figure 7. This demonstrates
the usefulness of the multi-level checkpointing approach.

Combined algorithm ADMV . The last column of Figure 7 presents the numbers of disk check-
points, memory checkpoints, guaranteed veri�cations and additional partial veri�cations used by
the ADMV algorithm on the four platforms and for di�erent numbers of tasks. Although partial
veri�cations are always more cost-e�ective than guaranteed ones, due to the imperfect recall, they
are only useful if one can use a lot of them, which is only possible when the number of tasks is
large enough. Therefore, the algorithm only starts to use partial veri�cations when the number
of tasks is greater than 30 on Hera, 40 on Coastal and 50 on Atlas, where silent error rate is the
highest among the four platforms. In our setting, adding partial veri�cations has a limited impact
on the makespan, with the exception of the Coastal SSD platform, where the cost of checkpoints
and veri�cations are much higher than on the other platforms. Partial veri�cations, being 100
times cheaper than guaranteed veri�cations, remain the only a�ordable resilience tool on this
platform. In this case, we observe an improved makespan (around 1% with 50 tasks) compared to
the ADMV ∗ algorithm, as shown in the �rst column of Figure 7.

Distribution of checkpoints and veri�cations. Figure 8 shows the positions of the disk
checkpoints, memory checkpoints, veri�cations and partial veri�cations obtained by running the
ADMV algorithm on each of the four platforms and for 50 tasks with the uniform distribution. For
all platforms, the algorithm does not perform any additional disk checkpoints. These being costly,
the algorithm rather uses more memory checkpoints and veri�cations. On most platforms, the
optimal solution is a combination of equi-spaced memory checkpoints and guaranteed veri�cations,
with additional partial veri�cations in-between. However, on the Coastal SSD platform, the cost
of checkpoints and veri�cations is substantially higher, which leads the algorithm to choose partial
veri�cations rather than guaranteed ones.

Decrease pattern. In the following, we focus on the platforms Hera and Coastal SSD, which
represent both extremes in terms of size (number of nodes) and hardware used for memory check-
pointing (RAM and SSD, respectively). The �rst column of Figure 9 presents the performance
of the three algorithms for di�erent numbers of tasks and for the Decrease pattern. The sec-
ond column shows the numbers of disk checkpoints, memory checkpoints, guaranteed and partial
veri�cations given by the ADMV algorithm. The third column is a visual representation of the
corresponding solution obtained for 50 tasks and with the same con�guration. We observe that
the makespan obtained is very similar for all three algorithms (with a slight advantage for ADMV ).
Since the large tasks at the beginning of the chain are more likely to fail, they will be checkpointed

21



Disk ckpts

Memory ckpts

Guaranteed verifs

Partial verifs

Platform Hera with A
DMV

 and n=50

Disk ckpts

Memory ckpts

Guaranteed verifs

Partial verifs

Platform Atlas with A
DMV

 and n=50

Disk ckpts

Memory ckpts

Guaranteed verifs

Partial verifs

Platform Coastal with A
DMV

 and n=50

Disk ckpts

Memory ckpts

Guaranteed verifs

Partial verifs

Platform Coastal SSD with A
DMV

 and n=50

Figure 8: Distribution of disk checkpoints, memory checkpoints and veri�cations for the ADMV algorithm on each
platform with the Uniform pattern.
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Figure 9: Performance of the three algorithms, and distribution of disk checkpoints, memory checkpoints and
veri�cations (for the ADMV algorithm) on platforms Hera and Coastal SSD with the Decrease pattern.

more often, as opposed to the small tasks at the end, which the algorithm does not even consider
worth verifying.

HighLow pattern. Once again, we focus on platforms Hera and Coastal SSD. Similarly to
Figure 9, Figure 10 assesses the impact of the HighLow pattern on the performance of the three
algorithms as well as on the numbers and the positions of checkpoints and veri�cations. Recall
that we set the �rst 10% of the tasks to contain 60% of the total computational weight, while the
rest of the tasks contain the remaining 40%. With 50 tasks and a total computational weight of
25000s, the �rst 5 tasks have a weight of 3000s each, while the remaining tasks have a weight of
around 222s each. Under this con�guration, an error occurring during the execution of a large task
would cost T lost ≈ 1500s time loss on average for fail-stop errors (see Equation (8)) and 3000s
for silent errors, plus an additional 3000s time loss for each preceding task that has not been
checkpointed. With the MTBF on Hera, a large task will fail with probability 1.3%, as opposed to
the probability of 0.096% for small tasks. As a result, the disk checkpoint, which takes 300s, turns
out to be still too expensive, but the memory checkpoint, which takes only 15.4s on Hera, becomes
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Figure 10: Performance of the three algorithms, and distribution of disk checkpoints, memory checkpoints and
veri�cations (for the ADMV algorithm) on platforms Hera and Coastal SSD with the HighLow pattern.

mandatory: on average an error will occur way before the total accumulated cost of our preventive
memory checkpoints even adds up to the cost of one task. On Coastal SSD, however, the memory
checkpoint is still quite expensive, so that only one of the �rst 5 tasks is marked for veri�cation
and memory checkpointing. On both platforms, since the rest of the tasks are small, the solution
is similar to the one we observed for the Uniform pattern, except that memory checkpoints and
veri�cations are less frequent.

Summary of results. Overall, we observe that the combined use of disk checkpoints and memory
checkpoints allows us to decrease the makespan, for the three task patterns and the four platforms.
The use of partial veri�cations further decreases the makespan, especially on the Coastal SSD
platform where the checkpointing costs are high. To give some numbers, our approach saves 2% of
execution time on Hera and 5% on Atlas. These percentages may seem small, but they correspond
to saving half an hour a day on Hera, and more than one hour a day on Atlas, with little further
overhead.

5.2. Results for multi-level checkpointing

In this section, we perform additional experiments using a set of parameters that features k = 3
levels of disk checkpoints, as opposed to only one in the previous section. Therefore, we now focus
on evaluating the impact of using multiple checkpointing levels to deal with fail-stop errors.

We compare three algorithms: (i) a multi-level algorithm AV ∗ with up to k = 3 levels of disk
checkpoints to handle both fail-stop and silent errors (with additional guaranteed veri�cations);
and (ii) the combined algorithm AMV that also uses memory checkpoints and partial veri�cations.
Note that AMV is the algorithm described in Section 4, while AV ∗ is a simpli�cation of this most
sophisticated algorithm.

Platform settings. Table 2 presents the checkpointing costs and the associated error rates
for this set of parameters, which are obtained from real measurements on the BG/Q platform
Mira running LAMMPS application at ANL by Balaprakash et al. [2]. Multi-level checkpointing
was provided by the FTI library [7], which o�ers four checkpointing levels (three levels of disk
and one level of memory): local checkpoint (memory), local checkpoint + partner-copy (level-1
disk), local checkpoint + Reed-Solomon coding (level-2 disk), and PFS-based checkpoint (level-3
disk). The error rate corresponds to a default failure rate commonly used for petascale HPC
applications [7, 38, 25].

Note that, with multiple levels of disk checkpoints, there is no obligation to use all available
levels. In this particular case with k = 3 levels, one may choose among four possible subsets of
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Set From Level 3 2 1 Memory

(B)
Balaprakash C (s) 150 50 30 10

et al. [2] λ (Hz) 1.39e-6 6.94e-6 1.39e-5 2.78e-5

Table 2: Set of parameters (B) used as input for simulations.
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Figure 11: Performance obtained by using the optimal solution to theMultilevel-Silent problem for settings (B),
using the AV ∗ algorithm (a) and the AMV algorithm (b), under the Uniform pattern with total work W = 3600s.

levels: {3}, {1, 3}, {2, 3}, and {1, 2, 3}. Of course, we still have to account for all error types, which
means that we need to adjust the error rates from the level selection as follows:
• {3}: use {λ3 ← λ1 + λ2 + λ3};
• {1, 3}: use {λ1} and {λ3 ← λ2 + λ3};
• {2, 3}: use {λ2 ← λ1 + λ2} and {λ3};
• {1, 2, 3}: use {λ1}, {λ2} and {λ3}.

Impact of checkpointing level selection. Figure 11 presents the normalized makespan with
respect to the error-free execution time obtained using the AV ∗ algorithm (a) and AMV algorithm
(b), with up to 20 tasks under the Uniform pattern with total work W = 3600s. First, we observe
that di�erent level selections yield di�erent overheads, but overall, using more levels does not
always improve performance. In particular, we can see that, for the simple algorithm AV ∗ without
additional memory checkpoints or partial veri�cations to deal with silent errors, the best solution
is to use the {1, 3} level selection, which achieves an overhead around 14.5%. In comparison, using
only level-3 checkpoints yields an overhead around 16.5%, while using all levels {1, 2, 3} yields an
overhead just below 16%. When allowing additional memory checkpoints and partial veri�cations
with the AMV algorithm, the {1, 3} level selection no longer achieves the best results. Instead,
it appears that using only level-3 checkpoints, i.e., replacing level-1 checkpoints by the cheaper
memory checkpoints, yields a slightly better overhead around 13%. Overall, AMV improves upon
the AV ∗ algorithm (with only level-3 checkpoints and guaranteed veri�cations) under the best
level selection {1, 3} by 1.5%.

Similarly to Figure 11, Figure 12 presents the normalized makespan with respect to the error-
free execution time obtained using the AV ∗ algorithm (a) and AMV algorithm (b), with up to
20 tasks under the Uniform pattern with total work W = 25000s. Note that tasks are now
signi�cantly larger than before, and we observe that the level selection {2, 3} beats all the other
possible combinations by achieving an overhead of 13% with theAV ∗ algorithm (Figure 12a), which
is further improved by another 0.5% when using the AMV algorithm with additional memory
checkpoints for 20 tasks (Figure 12b). Since larger tasks require more checkpoints, but o�er
limited opportunities to achieve that goal, the algorithms tend to favor additional levels of veri�ed

24



6 8 10 12 14 16 18 20

Number of Tasks

1.12

1.14

1.16

1.18

1.20

1.22

1.24

N
or

m
al

iz
ed

M
ak

es
pa

n

{3}-AV ∗

{1, 3}-AV ∗

{2, 3}-AV ∗

{1, 2, 3}-AV ∗

(a)

6 8 10 12 14 16 18 20

Number of Tasks

1.12

1.14

1.16

1.18

1.20

1.22

1.24

N
or

m
al

iz
ed

M
ak

es
pa

n

{3}-AMV

{1, 3}-AMV

{2, 3}-AMV

{1, 2, 3}-AMV

{2, 3}-AV ∗

(b)

Figure 12: Performance obtained by using the optimal solution to theMultilevel-Silent problem for settings (B),
using the AV ∗ algorithm (a) and the AMV algorithm (b), under the Uniform pattern with total work W = 25000s.

checkpoints, instead of single memory checkpoints, which will be lost when a fail-stop error strikes,
or single veri�cations (either guaranteed or partial). This is why the AMV algorithm becomes only
slightly better with 20 tasks, and that it is not as helpful in this context.

Results for other patterns. Results for the Decrease and HighLow patterns for the combined
problem are presented in Figures 13 and 14, respectively. As in the previous cases, we succeed to
improve performance by combining the use of multi-level checkpointing and memory checkpoints
(with veri�cations) for silent errors, especially when tasks are small (with total work W = 3600s).
Note that Figure 14 shows a drastic drop in overhead between 10 tasks and 11 tasks. Indeed,
with 10 or fewer tasks, the HighLow distribution consists of one big task, which has size 2160s
when W = 3600s and 15000s when W = 25000s. As a result, the probability of encountering an
error (either fail-stop or silent) during the execution of the �rst task reaches 0.1 when W = 3600s
and 0.5 when W = 25000s, suggesting that task size plays an important role in the overhead. In
comparison, with 11 or more tasks, and according to the HighLow distribution, we now have two
big tasks instead of one. Therefore, the probability decreases to 0.05 when W = 3600s and just
under 1/3 when W = 25000s.

Summary of results. Overall, the simulation results have shown that the combined approach
described in Section 4 to deal with both silent errors and multi-level fail-stop errors indeed leads to
improved performance. In particular, when tasks are small enough, both approaches help equally
to reduce the overhead. However, with fewer tasks and hence less freedom to checkpoint and
verify, additional checkpoint levels seem to be favored over additional memory checkpoints or
veri�cations. Furthermore, we have shown that the best checkpoint level selection does not always
include all the levels. Finally, we remark that the implemented dynamic programming algorithms
typically execute within just a few seconds and occupy up to 15GB of RAM for 20 tasks.

6. Related work

In this section, we discuss related work on fail-stop errors and silent errors, and �nally outline
speci�c results for linear work�ows.

6.1. Fail-stop errors

The de-facto general-purpose error recovery technique in high performance computing is check-
point and rollback recovery [21, 28]. For a divisible load application where checkpoints can be
inserted at any point in execution for a nominal cost C, there exist well-known formulas due
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Figure 13: Performance obtained by using the optimal solution to theMultilevel-Silent problem for settings (B),
using the AV ∗ algorithm under the Decrease pattern with total work W = 3600s (a) and W = 25000s (b).
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Figure 14: Performance obtained by using the optimal solution to theMultilevel-Silent problem for settings (B),
using the AV ∗ algorithm under the HighLow pattern with total work W = 3600s (a) and W = 25000s (b).

to Young [48] and Daly [24] to determine the optimal checkpointing period. For an application
composed of a linear chain of tasks, as in this paper, the problem of �nding the optimal check-
pointing strategy, i.e., of determining which tasks to checkpoint, in order to minimize the expected
execution time, has been solved by Toueg and Babaoglu [46].

However, single-level checkpointing schemes su�er from the intrinsic limitation that the cost
of checkpointing/recovery grows with failure probability, and becomes unsustainable at large
scale [29, 15] (even with diskless or incremental checkpointing [41]). To reduce the I/O overhead,
various two-level checkpointing protocols have been studied. Vaidya [47] proposed a two-level
recovery scheme that tolerates a single node failure using a local checkpoint stored on a partner
node. If more than one failure occurs during any local checkpointing interval, the scheme resorts
to the global checkpoint. Silva and Silva [45] advocated a similar scheme by using memory to store
local checkpoints, which is protected by XOR encoding. Di et al. [26] analyzed a two-level com-
putational pattern, and proved equal-length segments in the optimal solution. They also provided
mathematical equations that can be solved numerically to compute the optimal pattern length and
number of segments. Benoit et al. [10] relied on disk checkpoints to cope with fail-stop failures and
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used memory checkpoints coupled with error detectors to handle silent data corruptions. They
derived �rst-order approximation formulas for the optimal pattern length as well as the number
of memory checkpoints between two disk checkpoints.

Some authors have also generalized two-level checkpointing to account for an arbitrary number
of levels. Moody et al. [38] implemented this approach in a three-level Scalable Checkpoint/Restart
(SCR) library. They relied on a rather complex Markov model to recursively compute the e�-
ciency of the scheme. Bautista-Gomez et al. [7] designed a four-level checkpointing library, called
Fault Tolerance Interface (FTI), in which partner-copy and Reed-Solomon encoding are employed
as two intermediate levels between local and global disks. Based on FTI, Di et al. [25] proposed an
iterative method to compute the optimal checkpointing interval for each level with prior knowledge
of the application's total execution time. Benoit [8] provided a complete characterization of multi-
level checkpointing pattern based on �rst-order approximation, thus generalizing Young/Daly's
classical results. Hakkarinen and Chen [32] considered multi-level diskless checkpointing for tol-
erating simultaneous failures of multiple processors. Balaprakash et al. [2] studied the trade-o�
between performance and energy for general multi-level checkpointing schemes.

6.2. Silent errors

Most traditional approaches maintain a single checkpoint. If the checkpoint �le includes errors,
the application faces an irrecoverable failure and must restart from scratch. This is because
error detection latency is ignored in traditional rollback and recovery schemes, which assume
instantaneous error detection (therefore mainly targeting fail-stop failures) and are unable to
accommodate silent errors. We focus in this section on related work about silent errors. A
comprehensive list of techniques and references is provided by Lu, Zheng and Chien [36].

Considerable e�orts have been directed at error-checking to reveal silent errors. Error detection
is usually very costly. Hardware mechanisms, such as ECC memory, can detect and even correct a
fraction of errors, but in practice they are complemented with software techniques. The simplest
technique is triple modular redundancy and voting [37], which induces a highly costly veri�cation.
For high-performance scienti�c applications, process replication (each process is equipped with
a replica, and messages are quadruplicated) is proposed in the RedMPI library [30]. Elliot et
al. [27] combine partial redundancy and checkpointing, and con�rm the bene�t of dual and triple
redundancy. The drawback is that twice the number of processing resources is required (for dual
redundancy). An approach based on checkpointing and replication is proposed in [39], in order to
detect and enable fast recovery of applications from both silent errors and hard errors.

Application-speci�c information can be very useful to enable ad-hoc solutions, which dramati-
cally decrease the cost of detection. Many techniques have been advocated. They include memory
scrubbing [35] and ABFT techniques [34, 16, 44], such as coding for the sparse-matrix vector
multiplication kernel [44], and coupling a higher-order with a lower-order scheme for PDEs [13].
These methods can only detect an error but do not correct it. Self-stabilizing corrections after
error detection in the conjugate gradient method are investigated by Sao and Vuduc [43]. Heroux
and Hoemmen [33] design a fault-tolerant GMRES capable of converging despite silent errors.
Bronevetsky and de Supinski [17] provide a comparative study of detection costs for iterative
methods.

Recently, detectors based on data analytics have been proposed to serve as partial veri�ca-
tions [14, 5, 6]. These detectors use interpolation techniques, such as time series prediction and
spatial multivariate interpolation, on scienti�c dataset to o�er large error coverage for a negli-
gible overhead. Although not perfect, their accuracy-to-cost ratios tend to be very high, which
makes them interesting alternatives at large scale. For divisible load applications, periodic pat-
terns with partial and guaranteed veri�cations are studied in [10]. We point out that the approach
described in this paper is agnostic of the underlying error-detection technique and takes the cost
of veri�cation as an input parameter to the model.

6.3. Linear work�ows

In this section, we focus on work related to linear work�ows. The main di�erence with divisible
load applications is that one can insert resilience mechanisms only at the end of the execution of a
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task. We may well have a limited number of tasks, which prevents the use of any periodic strategy
à la Young/Daly [48, 24]. Instead, the optimal solution for any linear task graph is typically
obtained with dynamic programming algorithms.

As already mentioned, Toueg and Babaoglu [46] have dealt with single-level checkpointing for
fail-stop errors. Their work has been extended in [9] to deal with silent errors in addition to fail-
stop errors. The approach in [9] uses only guaranteed veri�cations and one-level of checkpointing.
It has been further extended in [11] (the preliminary version of this paper) to include partial
veri�cations in addition to guaranteed veri�cation, and in-memory checkpointing in addition to
disk checkpointing.

This work provides the last step and shows how to add multi-level disk checkpointing protocols.
We now deal with k disk checkpoint levels (where k is arbitrary), one memory checkpoint level,
and partial and guaranteed veri�cations. As a result, we combine the most e�cient techniques for
fail-stop and silent errors within a uni�ed framework.

7. Conclusion

In this paper, we focused on HPC applications whose dependency graph forms a linear chain,
and we proposed two important extensions to single-level checkpointing, allowing us to cope with
both multi-level fail-stop errors and silent data corruptions, on large-scale platforms. Although
numerous studies have dealt with either error source, few studies have dealt with both, while it
is mandatory to address both sources simultaneously at scale. We have combined the multi-level
disk checkpointing technique with in-memory checkpoints and veri�cation mechanisms (partial or
guaranteed), and we have designed a sophisticated multi-level dynamic programming algorithm
that computes the optimal solution for a linear application work�ow in polynomial time.

Simulations based on realistic parameters on several platforms show consistent results, and
con�rm the bene�t of the combined approach. Improvement can be seen both by using additional
guaranteed and/or partial veri�cations for silent errors, and by selecting several levels of check-
points, between those o�ered by the platform, to handle di�erent types of fail-stop errors. While
the most general algorithm has a high complexity of O(nk+5), where n is the number of tasks
and k is the number of checkpointing levels, it executes within a few seconds for n = 20 tasks
and k = 3 levels, and therefore can be readily used for real-life linear work�ows whose sizes rarely
exceed tens of tasks.

One interesting future direction is to assess the usefulness of this approach on general applica-
tion work�ows. The problem gets much more challenging, even in the simpli�ed scenario where
each task requires the entire platform to execute. In fact, in this simpli�ed scenario, it is already
NP-hard to decide which task to checkpoint in a simple join graph (n − 1 source tasks and a
common sink task), with only fail-stop errors striking (hence a single level of checkpoint and no
veri�cation at all) [1]. Still, heuristics are urgently needed to address the same problem as in this
paper, with several error sources, several checkpoint types, and two veri�cation mechanisms, if we
are to deploy general HPC work�ows e�ciently at scale.
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