
Scheduling Parallel Tasks under Multiple Resources:
List Scheduling vs. Pack Scheduling

Hongyang Sun∗, Redouane Elghazi†, Ana Gainaru∗, Guillaume Aupy‡, Padma Raghavan∗
∗Vanderbilt University, Nashville, TN, USA
†École Normale Supérieure de Lyon, France

‡Inria, LaBRI, Univ. Bordeaux, CNRS, Bordeaux-INP, Talence, France

Abstract—Scheduling in High-Performance Computing (HPC)
has been traditionally centered around computing resources (e.g.,
processors/cores). The ever-growing amount of data produced by
modern scientific applications start to drive novel architectures
and new computing frameworks to support more efficient data
processing, transfer and storage for future HPC systems. This
trend towards data-driven computing demands the scheduling
solutions to also consider other resources (e.g., I/O, memory,
cache) that can be shared amongst competing applications. In
this paper, we study the problem of scheduling HPC applications
while exploring the availability of multiple types of resources that
could impact their performance. The goal is to minimize the
overall execution time, or makespan, for a set of moldable tasks
under multiple-resource constraints. Two scheduling paradigms,
namely, list scheduling and pack scheduling, are compared
through both theoretical analyses and experimental evaluations.
Theoretically, we prove, for several algorithms falling in the two
scheduling paradigms, tight approximation ratios that increase
linearly with the number of resource types. As the complexity
of direct solutions grows exponentially with the number of
resource types, we also design a strategy to indirectly solve the
problem via a transformation to a single-resource-type problem,
which can significantly reduce the algorithms’ running times
without compromising their approximation ratios. Experiments
conducted on Intel Knights Landing with two resource types
(processor cores and high-bandwidth memory) and simulations
designed on more resource types confirm the benefit of the
transformation strategy and show that pack-based scheduling,
despite having a worse theoretical bound, offers a practically
promising and easy-to-implement solution, especially when more
resource types need to be managed.

I. INTRODUCTION

Scientific discovery now relies increasingly on data and
its management. Large-scale simulations produce an ever-
growing amount of data that has to be processed and analyzed.
As an example, it was estimated that the Square Kilometer
Array (SKA) could generate an exabyte of raw data a day
by the time it is completed [3]. In the past, scheduling
in High-Performance Computing (HPC) has been mostly
compute-based (with a primary focus on the processor/core
resource) [31]. In general, data management is deferred as
a second step separate from the data generation. The data
created would be gathered and stored on disks for data
scientists to study later. This will no longer be feasible, as
studies have shown that these massive amounts of data are
becoming increasingly difficult to process [9].

To cope with the big-data challenge, new frameworks such
as in-situ and in-transit computing [7] have emerged. The idea
is to use a subset of the computing resources to process data
as they are created. The results of this processing can then
be used to re-inject information in the subsequent simulation
in order to move the data towards a specific direction. In
addition, architectural improvements have been designed to
help process the data at hand. Emerging platforms are now

equipped with more levels of memory/storage (e.g., NVRAM,
burst buffers, data nodes) and better data transfer support (e.g.,
high-bandwidth memory, cache-partitioning technology) that
can be exploited by concurrent applications.

In view of such trend towards data-driven computing, this
work presents techniques on how to efficiently schedule com-
peting applications given this multi-tier memory hierarchy.
We go even further by considering in our scheduling model
any resource (e.g., I/O, memory, cache) that can be shared
or partitioned amongst these applications and that can impact
their performance. The goal is to design, analyze and evaluate
scheduling solutions that explore the availability of these mul-
tiple resource types in order to reduce the overall execution
time, or makespan, for a set of applications. The applications
in this work are modeled as independent moldable tasks whose
execution times vary depending on the different resources
available to them (see Section III for the formal definition
of moldable tasks). This general model is particularly repre-
sentative of the in-situ/in-transit workflows, where different
analysis functions have to be applied to different subsets of
the data generated.

We focus on two scheduling paradigms, namely, list
scheduling and pack scheduling. In list scheduling, all tasks
are first organized in a priority list. Then, the tasks are
assigned in sequence to the earliest available resources that
can fit them. In pack scheduling, the tasks are first partitioned
into a series of packs, which are then executed one after
another. Tasks within each pack are scheduled concurrently
and a pack cannot start until all tasks in the previous pack have
completed. Both scheduling paradigms have been studied by
the literature, mostly under a single-resource constraint (see
Section II for a literature review). Figure 1 shows an example
of applying both scheduling paradigms to a same set of tasks
under a single-resource constraint.

Compared to some more sophisticated scheduling algo-
rithms that could guarantee better theoretical bounds (e.g.,
[22], [18]), list-based and pack-based algorithms often pro-
duce simple yet efficient schedules that can be easily im-
plemented by practical runtime systems. Furthermore, these
algorithms can be adopted to the online and/or heterogeneous
scheduling environment with minimal change, thus offering
more general applicability to a wide range of scheduling
scenarios. Between these two paradigms, list scheduling can
make better use of the available resources (at least in theory)
by reducing the idle times between the tasks and thus maxi-
mizing the resource utilization. However, pack scheduling has
been advocated by some recent studies [2], [27] for being
practically valuable due to its ease of implementation (as batch
processing) and for incurring less scheduling overhead. The



(a) list scheduling (b) pack scheduling

Figure 1. An example of list scheduling and pack scheduling for a same set of tasks under a single-resource constraint.

relative merits of the two scheduling paradigms are yet to be
evaluated under multiple-resource constraints.

In this paper, we provide a comprehensive study of the two
scheduling paradigms through both theoretical analyses and
experimental evaluations in the presence of multiple resource
types. In this context, we make the following contributions:
• We present several scheduling algorithms under multiple-

resource constraint in both list and pack scheduling
paradigms, and prove tight approximation ratios for these
algorithms (2d for list and 2d + 1 for pack, where d is
the number of resource types).

• We design a transformation strategy that reduces the
problem of scheduling multiple resource types to single-
resource-type scheduling, thereby significantly reducing
the algorithms’ running times without compromising the
approximation ratios.

• We conduct experimental evaluations of these schedul-
ing algorithms on the Intel Xeon Phi Knights Landing
(KNL) processor, which offers two resource management
options (processor cores and high-bandwidth memory).

• We project the performance of both list- and pack-based
scheduling solutions under more than two resource types
using simulations on synthetic parallel workloads that
extend some classical speedup profiles.

Overall, the experimental/simultion results confirm the benefit
of the transformation strategy and show that pack schedul-
ing, despite having a slightly worse theoretical bound, can
indeed offer a practically promising yet easy-to-implement
solution compared to its list counterpart, especially when
more resource types need to be managed. The insights derived
from these results will be especially relevant to the emerging
architectures that will likely offer in the resource management
systems more scheduling possibilities across the memory
hierarchy to embrace the shift towards data-driven computing.

The rest of this paper is organized as follows. Section II
reviews some related work. Section III formally defines the
multiple-resource-type scheduling model. Section IV presents
several scheduling solutions and proves their approximation
ratios. Section V is devoted to experimental evaluation of dif-
ferent algorithms and heuristics. Finally, Section VI concludes
the paper with hints on future directions.

II. RELATED WORK

A. Parallel Task Models

Many parallel task models exist in the scheduling literature.
Feitelson [8] classified parallel tasks into three categories,
namely, rigid tasks, moldable tasks and malleable tasks. A
rigid task requires a fixed amount of resources (e.g., number
of processors) to execute. A moldable task can be executed
with a varying amount of resources, but once the task has

started the resource allocation cannot be changed. The most
flexible model is the one of malleable tasks, which allows the
amount of resources executing the task to vary at any time
during the execution. For the latter two models, two important
parameters are the speedup function and the total area (or
work). The speedup function relates the execution time of a
task to the amount of resources allocated to it, and the total
area is defined as the product of execution time and resource
allocation. Many prior works [2], [5], [22] have assumed that
the speedup of a task is a non-decreasing function of the
amount of allocated resources (hence the execution time is
a non-increasing function) and that the total area is a non-
decreasing function of the allocated resources. One example is
the well-known Amdahl’s law [1], which specifies the speedup
of executing a parallel task with s sequential fraction using
p processors as 1/(s+ 1−s

p ). Another example used by some
scheduling literature [4], [25], [14] is the speedup function
pα, where p represents the amount of allocated resources to
the task and α ≤ 1 is a constant. In particular, this function
has been observed for processor resources when executing
parallel matrix operations [24] as well as for characterizing
the cache behaviors in terms of the miss rate of data access
(which is directly related to the execution time) [15]. We refer
to this function as the power law.

All works above apply to the case with a single resource
type, and, to the best of our knowledge, no explicit speedup
model is known to include multiple resource types. In Section
V, we extend these speedup functions to construct synthetic
parallel tasks with multiple-resource demands. We also per-
form a profiling study of the Stream benchmark [21] on a
recent Intel Xeon Phi architecture that includes two resource
types (processor core and high-bandwidth memory).

B. Parallel Task Scheduling

Scheduling a set of independent parallel tasks to minimize
the makespan is known to be strongly NP-complete [11], thus
much attention has been directed at designing approximation
or heuristic algorithms. Most prior works focused on allocat-
ing a single resource type (i.e., processors) to the tasks, and
the constructed schedules are either pack-based (also called
shelf-based or level-based) or list-based.

Approximation Algorithms: Scheduling rigid tasks with
contiguous processor allocation can be considered as a rect-
angle packing or 2D-strip packing problem. For this problem,
Coffman et al. [6] showed that the Next-Fit Decreasing
Height (NFDH) algorithm is 3-approximation and the First-Fit
Decreasing-Height (FFDH) algorithm is 2.7-approximation.
Both algorithms pack rectangles onto shelves, which are
equivalent to creating pack-based schedules. The first result
(i.e., 3-approximation) has also been extended to the case of



moldable task scheduling [2], [30]. Turek et al. [30] presented
a strategy to extend any algorithm for scheduling rigid tasks
into an algorithm for scheduling moldable tasks in polynomial
time. The strategy preserves the approximation ratio provided
that the makespan for the rigid-task problem satisfies certain
conditions. The complexity of such an extension was im-
proved in [20] with possibly a worse schedule than the one
obtained in [30] but without compromising the approximation
ratio. Thanks to these strategies, a 2-approximation algorithm
was devised for moldable tasks based on list scheduling
[30], [20], extending the same ratio previously known for
rigid tasks [30], [10]. Using dual-approximation techniques,
Mounie et al. [22] presented a 1.5-approximation algorithm
for moldable tasks while assuming that the total area of a task
is a non-decreasing function of the allocated processors. Also
for moldable tasks, Jansen and Porkolab [18] presented, for
any ε > 0, a (1+ ε)-approximation scheme when the number
of processors is a fixed constant.

While all results above are for scheduling under a single
resource type, only a few papers have considered schedul-
ing under multiple resource types. Garey and Graham [10]
proved that a simple list-scheduling algorithm is (d + 1)-
approximation for rigid tasks, where d is the number of
resource types. He et al. [17] proved the same asymptotic
result for scheduling a set of malleable jobs, each represented
as a direct acyclic graph (DAG) of unit-size tasks. For mold-
able tasks, Shachnai and Turek [26] presented a technique to
transform a c-approximation algorithm on a single resource
type to a c · d-approximation algorithm on d types of re-
sources. Partially inspired by these results, this paper presents
techniques and algorithms with improved approximations for
pack scheduling and new algorithms for list scheduling under
multiple resource types.

Heuristics: Some papers have proposed heuristic solutions
for multiple-resource-type scheduling under various different
models and objectives. Leinberger et al. [19] considered rigid
tasks and proposed two heuristics that attempt to balance
the usage of different resource types through backfilling
strategies. He et al. [16] studied online scheduling of DAG-
based jobs and proposed a multi-queue balancing heuristic to
balance the sizes of the queues that contain ready tasks under
different resource types. Ghodsi et al. [12] proposed Dominant
Resource Fairness (DRF), a multiple-resource-type scheduling
algorithm for user tasks with fixed resource demands. It
aims at ensuring the resource allocation fairness among all
users by identifying the dominant resource share for each
user and maximizing the minimum dominant share across
all users. Grandl et al. [13] considered scheduling malleable
tasks under four resource types (CPU, memory, disk and
network), and designed a heuristic, called Tetris, that packs
tasks to a cluster of machines. This is similar to pack-based
scheduling but instead of creating packs in time it creates them
in space. Tetris works by selecting a task with the highest
correlation between the task’s peak resource demands and the
machine’s resource availabilities, with the aim of minimizing
resource fragmentation. NoroozOliaee et al. [23] considered
a similar cluster scheduling problem but with two resources
only (CPU and memory). They showed that the simple Best
Fit plus Shortest Task First scheduling outperforms other
packing heuristics (e.g., First Fit, FCFS) in terms of resource
utilization and task queueing delays.

III. MODEL

This sections presents a formal model of the scheduling
problem, which we call d-RESOURCE-SCHEDULING. Sup-
pose a platform has d different types of resources subject to
allocation (e.g., processor, memory, cache). For each resource
type i, there is a total amount P (i) of resources available.
Consider a set of n independent tasks (or jobs), all of
which are released at the same time on the platform, so the
problem corresponds to scheduling a batch of applications
in HPC environment. For each task j, its execution time
tj(~pj) is a function of the resource allocation vector ~pj =

(p
(1)
j , p

(2)
j , · · · , p(d)j ), where p(i)j denotes the amount of the i-

th resource allocated to task j. In reality, the execution times
are typically obtained by application profiling or interpolation
and curve-fitting from historic data. Suppose ~pj and ~qj are
two resource allocation vectors, and we define ~pj � ~qj if
p
(i)
j ≤ q

(i)
j for all 1 ≤ i ≤ d. Here, the execution time

is assumed to be a non-increasing function of the resource
allocation, i.e., ~pj � ~qj implies tj(~pj) ≥ tj(~qj). This means
that increasing the allocation of any one type of resource
without decreasing the others will not increase the execution
time1. We also assume that the resource allocations p(i)j ’s and
the total amount of resources P (i)’s are all integer values. This
holds naturally true for discrete resources such as processors2.
For other resources (e.g., memory, cache), it can be justified
as most practical resource management systems allocate the
resources in discrete chunks (e.g., memory blocks, cache
lines). Note that some tasks may not require all resource types
in order to execute, hence its resource allocation p

(i)
j for a

particular resource can be zero, in which case the execution
time remains validly defined. In contrast, other tasks may
require a minimum amount of certain resource in order to
execute. In this case, the execution time can be defined as
infinity for any amount of resource below this threshold. The
model is flexible to handle both scenarios.

In this paper, we focus on moldable task scheduling [8],
where the amount of resources allocated to a task can be freely
selected by the scheduler at launch time but they cannot be
changed after the task has started the execution. Moldable task
scheduling strikes a good balance between practicality and
performance by incurring less overhead than malleable task
scheduling yet achieving more flexible task executions than
rigid task scheduling. For the d-RESOURCE-SCHEDULING
problem, the scheduler needs to decide, for each task j, a
resource allocation vector ~pj along with a starting time sj . At
any time t, a task is said to be active if it has started but not yet
completed, i.e., t ∈ [sj , sj + tj(~pj)). Let Jt denote the set of
active tasks at time t. For a solution to be valid, the resources
used by the active tasks at any time should not exceed the
total amount of available resources for each resource type,
i.e.,

∑
j∈Jt p

(i)
j ≤ P (i) for all t and i. The objective is to

minimize the maximum completion time, or the makespan,
of all tasks, i.e., T = maxj(sj + tj(~pj)).

Since d-RESOURCE-SCHEDULING is a generalization of
classical makespan minimization problem with a single re-

1This assumption is not restrictive, as we can discard an allocation ~qj that
satisfies ~pj � ~qj and tj(~pj) < tj(~qj). This is because any valid schedule
that allocates ~qj to task j can be replaced by a valid schedule that allocates ~pj
to the task without increasing the execution time, thus rendering ~qj useless.

2We do not allow fractional processor allocation (typically realized by
timesharing a processor among several tasks) as assumed by some prior work.



Table I. List of Notations.

For platform
d Number of resource types
P (i) Total amount of i-th type of resource (i = 1, · · ·, d)
For any task j

p
(i)
j Amount of i-th type of resource allocated to task j

~pj Resource allocation vector of task j
tj(~pj) Execution time of task j with vector ~pj
aj(~pj) Area of task j with vector ~pj
sj Starting time of task j
For set of all tasks
n Number of all tasks
p Resource allocation matrix for all tasks
A(p) Total area of all tasks with matrix p
tmax(p) Maximum execution time of all tasks with matrix p
T (p) Makespan of all tasks with matrix p
L(p, s) Maximum of A(p)/s and tmax(p) for any s > 0
Lmin(s) Minimum L(p, s) over all matrix p

source type, it is strongly NP-complete. Hence, we are inter-
ested in designing approximation and heuristic algorithms. In
this paper, we will focus on and compare two major schedul-
ing paradigms, namely, list scheduling and pack scheduling.
A scheduling algorithm S is said to be c-approximation if its
makespan satisfies TS ≤ c ·TOPT for any instance, where TOPT

denotes the makespan by an optimal moldable scheduler. Note
that the optimal scheduler needs not be restricted to either list
scheduling or pack scheduling.

IV. THEORETICAL ANALYSIS

In this section, we present polynomial-time algorithms for
the d-RESOURCE-SCHEDULING problem under both list- and
pack-scheduling paradigms, and we prove tight approximation
ratios for these algorithms.

A. Preliminaries

We start with some preliminary definitions that will be used
throughout the analysis. Table I provides a summary of the
main notations used.

Definition 1. Define p = (~p1, ~p2, · · ·, ~pn)T to be a
resource allocation matrix for all tasks, where ~pj =

(p
(1)
j , p

(2)
j , · · ·, p(d)j ) is a resource allocation vector for task j.

Definition 2. Given a resource allocation matrix p for the d-
RESOURCE-SCHEDULING problem, we define the following:

• For task j, aj(~pj)=
∑d
i=1

p
(i)
j

P (i) ·tj(~pj) is the task’s area3;
• A(p) =

∑n
j=1 aj(~pj) is the total area of all tasks;

• tmax(p) = maxj tj(~pj) is the maximum execution time
of all tasks;

• L(p, s) = max
(A(p)

s , tmax(p)
)

for any s > 0.

The last quantity L(p, s) is related to the lower bound of
the makespan. In particular, we define

Lmin(s) = min
p
L(p, s) , (1)

and we will show later that it is a lower bound on the
makespan when s is set to be d.

In the following, we will present two general techniques
for constructing the scheduling solutions. The first technique
is a two-phase approach, similarly to the one considered in
scheduling under a single resource type [20]:

3Rigorously, we define aj(~pj) =∞ if ∃i, s.t. p(i)j = 0 and tj(~pj) =∞.

• Phase 1: Determines a resource allocation matrix for all
the tasks;

• Phase 2: Constructs a rigid schedule based on the fixed
resource allocation of the first phase.

The second technique is a transformation strategy that re-
duces the d-RESOURCE-SCHEDULING problem to the 1-
RESOURCE-SCHEDULING problem, which is then solved and
whose solution is transformed back to the original problem.

Section IV-B presents a resource allocation strategy (Phase
1). Section IV-C presents a transformation strategy, followed
by rigid task scheduling schemes (Phase 2) in Section IV-D
under both pack and list scheduling. Finally, Section IV-E
puts these different components together and presents several
complete scheduling solutions.

B. A Resource Allocation Strategy

This section describes a resource allocation strategy for
the first phase of the scheduling algorithm. It determines the
amounts of resources allocated to each task, which are then
used to schedule the tasks in the second phase as a rigid task
scheduling problem.

The goal is to find efficiently a resource allocation matrix
that minimizes L(p, s), i.e.,

psmin = argmin
p

L(p, s) . (2)

Let P =
∏d
i=1(P

(i) + 1) denote the number of all possible
allocations for each task, including the ones with zero amount
of resource under a particular resource type. A straightforward
implementation takes O(Pn) time, which grows exponen-
tially with the number of tasks n. Algorithm 1 presents a
resource allocation strategy RAd(s) that achieves this goal
in O(nP (logP + log n + d)) time. Note that when the
amounts of resources under different types are in the same
order, i.e., P (i) = O(Pmax) for all i = 1, · · ·, d, where
Pmax = maxi P

(i), the running time grows exponentially
with the number of resource types d, i.e., the complexity
contains O(P dmax). Since the number of resource types is
usually a small constant (less than 4 or 5), the algorithm runs
in polynomial time under most realistic scenarios.

The algorithm works as follows. First, it linearizes and sorts
all P resource allocation vectors for each task and eliminates
any allocation that results in both a higher execution time
and a larger total area (Lines 2-17), for such a vector can
be replaced by another one that leads to the same or smaller
Lmin(s) (Equation (1)). Each task then ends up with an array
of admissible allocations in increasing order of execution time
and decreasing order of total area. The complexity for this part
is O

(
n(P logP + Pd)

)
, which is dominated by sorting each

task’s allocations and computing its area. Then, the algorithm
goes through all possible tmax, i.e., the maximum execution
time, from the remaining admissible allocations, and for each
tmax considered, it computes the minimum total area A and
hence the associated L value (Lines 18-40). This is achieved
by maintaining the tasks in a priority queue with their longest
execution times as priorities and updating the queue with a
task’s new priority when its next longest execution time is
considered. The algorithm terminates either when at least one
task has exhausted its admissible allocations, in which case the
priority queue will have fewer than n tasks (Line 20), or when
L becomes dominated by A

s (Line 30), since the total area
only increases and the maximum execution time decreases



Algorithm 1: Resource Allocation Strategy RAd(s)

Input: Set of n tasks, execution time tj(~p) ∀j, ~p and resource limit
P (i) ∀i

Output: Resource allocation matrix ps
min = argminp L(p, s)

1 begin
2 P ←

∏d
i=1(P

(i)+1);
3 A← 0;
4 for j = 1 to n do
5 Linearize all P resource allocation vectors for task j in an

array res alloc and sort it in non-decreasing order of task
execution time;

6 admissible allocationsj ← list();
7 min area ←∞;
8 for h = 1 to P do
9 ~p ← res alloc(h);

10 if aj(~p) < min area then
11 min area← aj(~p);
12 admissible allocationsj .append(~p);
13 end
14 end
15 ~pj ← admissible allocationsj .last element();
16 A← A+ aj(~pj);
17 end
18 Build a priority queue Q of n tasks with their longest execution

time tj(~pj)’s as priorities;
19 Lmin =∞;
20 while Q.size() = n do
21 k ← Q.highest priority element();
22 ~pk ← admissible allocationsk.last element();
23 tmax = tk(~pk);
24 L = max

(
A
s
, tmax

)
;

25 if L < Lmin then
26 Lmin ← L;
27 ps

min ← (~p1, ~p2, · · · , ~pn)T ;
28 end
29 if A

s
≥ tmax then

30 break;
31 end
32 admissible allocationsk.pop last();
33 Q.remove highest priority element();
34 if admissible allocationsk.nonempty() then
35 ~p ′k ← admissible allocationsk.last element();
36 A← A+ ak(~p

′
k )− ak(~pk);

37 Q.insert element(k) with priority tk(~p
′
k );

38 end
39 end
40 end

during this process. As the allocation is only changed for one
task when a new tmax is considered, the total area can be
updated by keeping track of the area change due to this task
alone (Line 36). The algorithm considers at most nP possible
tmax values and the complexity at each step is dominated by
updating the priority queue, which takes O(log n) time, and
by updating the total area, which takes O(d) time, so the
overall complexity for this part is O

(
nP (log n+ d)

)
.

Now, we show that the resource allocation matrix psmin

returned by Algorithm 1 while setting the parameter s to be d
can be used by a rigid task scheduling strategy in the second
phase to achieve good approximations.

Theorem 1. If a rigid task scheduling algorithm Rd that uses
the resource allocation matrix pdmin obtained by the strategy
RAd(d) produces a makespan

TRd(p
d
min) ≤ c · Lmin(d) , (3)

then the two-phase algorithm RAd(d)+Rd is c-approximation
for the d-RESOURCE-SCHEDULING problem.

To prove the above theorem, let us define pOPT to be the
resource allocation matrix of an optimal schedule, and let TOPT

denote the corresponding optimal makespan. We will show in

the following lemma that Lmin(d) serves as a lower bound on
TOPT. Then, Theorem 1 follows directly, since TRAd(d)+Rd =
TRd(p

d
min) ≤ c · Lmin(d) ≤ c · TOPT.

Lemma 1. TOPT ≥ Lmin(d).

Proof. We will prove that, given a resource allocation matrix
p, the makespan produced by any rigid task scheduler using
p must satisfy T (p) ≥ tmax(p) and T (p) ≥ A(p)

d . Thus,
for the optimal schedule, which uses pOPT, we have TOPT ≥
max

(
tmax(pOPT),

A(pOPT)
d

)
= L(pOPT, d) ≥ Lmin(d). The last

inequality is because Lmin(d) is the minimum L(p, d) among
all possible resource allocations including pOPT (Equation (1)).

The first bound T (p) ≥ tmax(p) is trivial since the
makespan of any schedule should be at least the execution
time of the longest task. For the second bound, we have, in
any valid schedule with makespan T (p), that:

A(p) =

n∑
j=1

d∑
i=1

p
(i)
j

P (i)
· tj(~pj)

=

d∑
i=1

1

P (i)

n∑
j=1

p
(i)
j · tj(~pj)

≤
d∑
i=1

1

P (i)
· P (i) · T (p)

= d · T (p) .

The inequality is because P (i) ·T (p) is the maximum volume
for resource type i that can be allocated to all the tasks within
a total time of T (p).

C. A Transformation Strategy

This section describes a strategy to indirectly solve the d-
RESOURCE-SCHEDULING problem via a transformation to
the 1-RESOURCE-SCHEDULING problem.

Algorithm 2 presents the transformation strategy TF,
which contains three steps. First, any instance I of the d-
RESOURCE-SCHEDULING problem is transformed to an in-
stance I ′ of the 1-RESOURCE-SCHEDULING problem. Then,
I ′ is solved by any moldable task scheduler under a single
resource type. Lastly, the solution obtained for I ′ is trans-
formed back to obtain a solution for the original instance I .
The complexity of the transformation alone (without solving
the instance I ′) is O(nQd), dominated by the first step of the
strategy, where Q is defined as the Least Common Multiple
(LCM) of all the P (i)’s. Note that if Q is in the same order
as the maximum amount of resource Pmax = maxi P

(i)

among all resource types (e.g., when P (i)’s are in powers
of two), the complexity becomes linear in Pmax. In contrast,
the complexity of solving the problem directly (by relying on
Algorithm 1) contains P dmax. Thus, the transformation strategy
can greatly reduce an algorithm’s running time, especially
when more resource types need to be scheduled (see our
simulation results in Section V-D).

In the subsequent analysis, we will use the following
notations:
• For the transformed instance I ′: Let q =
(q1′ , q2′ , · · · , qn′)T denote the resource allocation
for the transformed tasks. L′min(s) is the minimum
L′(q, s) as defined in Equation (1), and T ′M1

denotes
the makespan produced by a moldable task scheduler
M1 for the 1-RESOURCE-SCHEDULING problem.



Algorithm 2: Transformation Strategy TF
Input: Set of n tasks, execution time tj(~p) ∀j, ~p, resource limit

P (i) ∀i
Output: Starting time sj and resource allocation vector ~pj ∀j
(1) Transform d-RESOURCE-SCHEDULING instance I to
1-RESOURCE-SCHEDULING instance I′;
• I′ has the same number n of tasks as I;
• The resource limit for the only resource of I′ is Q = lcm

i=1···d
P (i);

• For any task j′ in I′, its execution time with any amount of resource
q ∈ {0, 1, 2, · · · , Q} is defined as tj′ (q) = tj((b q·P

(i)

Q
c)i=1···d);

(2) Solve the 1-RESOURCE-SCHEDULING instance I′;
(3) Transform 1-RESOURCE-SCHEDULING solution S′ back to
d-RESOURCE-SCHEDULING solution S;
• For any task j in I , its starting time is sj = sj′ , where sj′ is the

starting time of task j′ in I′, and its resource allocation vector is

~pj = (b
qj′ ·P

(i)

Q
c)i=1···d, where qj′ is the allocation of the only

resource for task j′ in I′.

• For the original instance I: Recall that Lmin(s) denotes
the minimum L(p, s) defined in Equation (1), and let
TTF+M1

denote the makespan produced by the algorithm
TF + M1, which combines the transformation strategy
TF and the scheduler M1 for a single resource type.

We show that the transformation achieves good approxi-
mation for the d-RESOURCE-SCHEDULING problem if the
solution for the 1-RESOURCE-SCHEDULING problem satisfies
certain property.

Theorem 2. For any transformed instance I ′ of the 1-
RESOURCE-SCHEDULING problem, if a moldable task sched-
uler M1 under a single resource type produces a makespan

T ′M1
≤ c · L′min(d) , (4)

then the algorithm TF + M1 is c-approximation for the d-
RESOURCE-SCHEDULING problem.

Before proving the approximation, we first show that the
schedule obtained for I via the transformation strategy is valid
and that the makespan for I ′ is preserved.

Lemma 2. Any valid solution by scheduler M1 for I ′ trans-
forms back to a valid solution by algorithm TF + M1 for I ,
and TTF+M1 = T ′M1

.

Proof. According to Steps (1) and (3) of the transformation,
the execution time for each task j in I is the same as that of
j′ in I ′, i.e., tj(~pj) = tj′(qj′). Hence, the makespan is equal
for both I and I ′, since the corresponding tasks also have the
same starting time, i.e., sj = sj′ .

If the schedule for I ′ is valid, i.e.,
∑
j′∈J′t

qj′ ≤ Q ∀t, then

we have
∑
j∈Jt p

(i)
j =

∑
j∈Jtb

qj′ ·P
(i)

Q c ≤ P (i)

Q

∑
j′∈J′t

qj′ ≤
P (i) ∀i, t, rendering the schedule for I valid as well.

The following lemma relates the makespan lower bound of
the transformed instance to that of the original instance.

Lemma 3. L′min(d) ≤ Lmin(d).

Proof. We will show that given any resource allocation p
for I , there exists an allocation q(p) for I ′ such that
L′(q(p), d) ≤ L(p, d). Thus, for pdmin that leads to
Lmin(d), there is a corresponding q(pdmin) that satisfies
L′(q(pdmin), d) ≤ L(pdmin, d) = Lmin(d), and therefore
L′min(d) = minq L

′(q, d) ≤ L′(q(pdmin), d) ≤ Lmin(d).

Consider any resource allocation p = (~p1, ~p2, · · · , ~pn)T
for I . For each task j, let kj denote its dominating resource
type in terms of the proportion of resource used, i.e., kj =

argmini
p
(i)
j

P (i) . We construct q(p) = (q1′ , q2′ , · · · , qn′)T for

I ′ by setting, for each task j′, an allocation qj′ =
p
(kj)

j ·Q
P (kj)

. As
P (kj) divides Q, qj′ is an integer and hence a valid allocation.

According to Step (1) of the transformation, the execution
time of task j′ in I ′ satisfies

tj′(qj′) = tj((b
p
(kj)
j · P (i)

P (kj)
c)i=1···d) ≤ tj(~pj) .

The inequality is because p(i)j ≤ b
p
(kj)

j ·P (i)

P (kj)
c ∀i, which we get

by the choice of kj and the integrality of p(i)j , and because we
assumed that the execution time is a non-increasing function
of each resource allocation (in Section III). As a result, the
area of each task j′ in I ′ also satisfies

aj′(qj′)=
qj′

Q
tj′(qj′)≤

p
(kj)
j

P (kj)
tj(~pj)≤

d∑
i=1

p
(i)
j

P (i)
tj(~pj)=aj(~pj).

Hence, the maximum execution times and the
total areas for the two instances I ′ and I satisfy
t′max(q(p)) = maxj′ tj′(qj′) ≤ maxj tj(~pj) = tmax(p)
and A′(q(p)) =

∑
j′ aj′(qj′) ≤

∑
j aj(~pj) = A(p). This

leads to L′(q(p), d) = max
(A′(q(p))

d , t′max(q(p))
)
≤

max
(A(p)

d , tmax(p)
)
= L(p, d).

(Proof of Theorem 2). Based on the above results, we can
derive:

TTF+M1
= T ′M1

(Lemma 2)
≤ c · L′min(d) (Equation (4))
≤ c · Lmin(d) (Lemma 3)
≤ c · TOPT . (Lemma 1)

D. Rigid Task Scheduling

This section presents strategies to schedule rigid tasks under
fixed resource allocations. The strategies include both list-
based and pack-based scheduling. The results extend the
theoretical analyses of single-resource-type scheduling [30],
[2] to account for the presence of multiple resource types.

1) List Scheduling: We first present a list-based scheduling
strategy for a set of rigid tasks under multiple resource types.
A list-based algorithm arranges the set of tasks in a list. At
any moment starting from time 0 and whenever an existing
task completes execution and hence releases resources, the
algorithm scans the list of remaining tasks in sequence and
schedules the first one that fits, i.e., there is sufficient amount
of resource to satisfy the task under each resource type.
Algorithm 3 presents the list scheduling strategy LSd with d
resource types, and it extends the algorithm presented in [30]
for scheduling under a single resource type. The complexity
of the algorithm is O(n2d), since scheduling each task incurs
a cost of O(nd) by scanning the taskList and updating the
resource availability for the times in sortedT imeList.

The following lemma shows the performance of this list
scheduling scheme.

Lemma 4. For a set of rigid tasks with a resource allocation
matrix p, the list scheduling algorithm LSd achieves, for any



Algorithm 3: List Scheduling Strategy LSd
Input: Resource allocation matrix p for the tasks and resource limit

P (i) ∀i
Output: Starting time sj ∀j
begin

Arrange the tasks in a list taskList;
sortedT imeList← {0};
while taskList.nonempty() do

t = sortedT imeList.pop first();
for j = 1 to taskList.size() do

if task j fits at time t then
Schedule task j at time t, i.e., sj = t;
sortedT imeList.insert(sj + tj(~pj));
Update available resources for all times before
sj + tj(~pj);

end
end

end
end

parameter s ≥ 1, a makespan

TLSd(p) ≤ 2s · L(p, s) . (5)

Proof. We will prove in the following that TLSd(p) ≤ 2 ·
max

(
tmax(p), A(p)

)
. For any s ≥ 1, it will then lead to

TLSd(p) ≤ 2s ·max
(
tmax(p),

A(p)
s

)
= 2s · L(p, s).

First, suppose the makespan satisfies TLSd(p) ≤ 2tmax(p),
then the claim holds trivially. Otherwise, we will show
TLSd(p) ≤ 2A(p), thus proving the claim. To this end,
consider any time t ∈ [0,

TLSd (p)

2 ], and define t′ = t+
TLSd (p)

2 .
Since tmax(p) <

TLSd (p)

2 by our assumption, any task
that is active at time t′ has not been scheduled at time t.
Define U

(i)
t =

∑
j∈Jt

p
(i)
j

P (i) to be the total utilization for
resource of type i at time t. Therefore, we should have
∃i, s.t. U (i)

t +U
(i)
t′ ≥ 1, for otherwise any active task at time

t′ could have been scheduled by the algorithm at time t or
earlier. Thus, we can express the total area as:

A(p) =

∫ TLSd (p)

t=0

d∑
i=1

U
(i)
t dt

=

∫ TLSd
(p)

2

t=0

d∑
i=1

(
U

(i)
t + U

(i)
t′

)
dt

≥ TLSd(p)

2
.

2) Pack Scheduling: We now present a pack-based schedul-
ing strategy. Recall that a pack contains several concurrently
executed tasks that start at the same time and the tasks in the
next pack cannot start until all tasks in the previous pack have
completed. Algorithm 4 presents the pack scheduling strategy
PSd with d resource types. It extends the algorithm presented
in [2] for scheduling under a single resource type. Specifically,
the tasks are first sorted in non-increasing order of execution
times (which are fixed due to fixed resource allocations).
Then, they are assigned one by one to the last pack if it
fits, i.e., there is sufficient amount of resource under each
resource type. Otherwise, a new pack is created and the task
is assigned to the new pack. The complexity of the algorithm
is O

(
n(log n+ d)

)
, which is dominated by the sorting of the

tasks and by checking the fitness of each task in the pack.
The following lemma shows the performance of this pack

scheduling scheme.

Lemma 5. For a set of rigid tasks with a resource allocation

Algorithm 4: Packing Scheduling Strategy PSd
Input: Resource allocation matrix p for the tasks and resource limit

P (i) ∀i
Output: Set of packs {B1, B2, · · · } containing the tasks and starting

times Sm for each pack Bm

begin
Sorted the tasks in non-increasing order of execution time tj(~pj);
m← 1;
B1 ← ∅;
S1 ← 0;
for j = 1 to n do

if task j fits in pack Bm then
Bm ← Bm ∪ {j};

else
m← m+ 1;
Bm ← {j};
Sm ← Sm−1 +maxj∈Bm−1

tj(~pj);
end

end
end

matrix p, the pack scheduling algorithm PSd achieves, for
any parameter s > 0, a makespan

TPSd(p) ≤ (2s+ 1) · L(p, s) . (6)

Proof. We will prove in the following that TPSd(p) ≤
2A(p) + tmax(p), which will then lead to TPSd(p) ≤ (2s +

1) ·max
(A(p)

s , tmax(p)
)
= (2s+ 1) · L(p, s).

Suppose the algorithm creates M packs in total. For each
pack Bm, where 1 ≤ m ≤ M , let Am denote the total area
of the tasks in the pack, i.e., Am =

∑
j∈Bm aj(~pj), and let

Tm denote the total execution time of the pack, which is the
same as the execution time of the longest task in the pack,
i.e., Tm = maxj∈Bm tj(~pj).

Consider the time when the algorithm tries to assign a task
j to pack Bm and fails due to insufficient amount of i-th
resource, whose remaining amount is denoted by p(i). As
the tasks are handled by decreasing execution time, we have
Am ≥

(
1− p(i)

P (i)

)
tj(~pj). Also, because task j cannot fit in

pack Bm, it means that its allocation p(i)j on resource i is at
least p(i). This task is then assigned to pack Bm+1, so we
have Am+1 ≥ aj(~pj) ≥ p(i)

P (i) tj(~pj). Since task j is the first
task put in the pack and all the following tasks have smaller
execution times, we have Tm+1 = tj(~pj). Hence,

Am +Am+1 ≥ tj(~pj) = Tm+1 .

Summing the above inequality over m, we get
∑M
m=2 Tm ≤

2
∑M
m=1Am = 2A(p). Finally, as the longest task among all

tasks is assigned to the first pack, i.e., T1 = tmax(p), we get
the makespan TPSd(p) =

∑M
m=1 Tm ≤ 2A(p)+tmax(p).

E. Putting Them Together

This section combines various strategies presented in the
previous sections to construct several moldable task schedul-
ing algorithms under multiple resource types. Two solutions
are presented for the d-RESOURCE-SCHEDULING problem
under each scheduling paradigm (list vs. pack) depending
on if the problem is solved directly or indirectly via a
transformation to the 1-RESOURCE-SCHEDULING problem.
The following shows the combinations of the two solutions:

Direct-based solution: RAd(d) + Rd
Transform-based solution: TF + RA1(d) + R1



Here, RA denotes the resource allocation strategy (Algo-
rithm 1), TF denotes the transformation strategy (Algo-
rithm 2), and R denotes the rigid task scheduling strategy
LS or PS (Algorithm 3 or 4). Four algorithms can be
resulted from the above combinations, and we call them
D(IRECT)-PACK, D(IRECT)-LIST, T(RANSFORM)-PACK and
T(RANSFORM)-LIST, respectively.

We point out that when the LCM of all the P (i)’s is
dominated by Pmax (e.g., when P (i)’s are powers of two), the
transform-based solution will reduce the overall complexity
of the direct-based solution exponentially, thus significantly
improving the algorithms’ running times. The approximation
ratios of the transform-based solutions, however, will not be
compromised. The following theorem proves the ratios of
these algorithms.

Theorem 3. The list-based algorithms (D-LIST and T-LIST)
are 2d-approximations and pack-based algorithms (D-PACK
and T-PACK) are (2d + 1)-approximations. Moreover, the
bounds are asymptotically tight for the respective algorithms.

Proof. We prove the approximation ratios for the two pack-
based scheduling algorithms. The proof for the list-based
algorithms is very similar and hence omitted.

For D-PACK (RAd(d) + PSd): Using pdmin found by
RAd(d), we have TPSd(p

d
min) ≤ (2d + 1) · L(pdmin, d) =

(2d + 1) · Lmin(d) from Lemma 5 (by setting s = d). Then,
based on Theorem 1, we get TRAd(d)+PSd ≤ (2d+ 1) · TOPT.

For T-PACK (TF + RA1(d) + PS1): Applying PS1 to the
transformed instance using qdmin found by RA1(d), we have
T ′RA1(d)+PS1

= T ′PS1
(qdmin) ≤ (2d+ 1) · L′(qdmin, d) = (2d+

1) · L′min(d) from Lemma 5 (again by setting s = d). Then,
based on Theorem 2, we get TTF+RA1(d)+PS1

≤ (2d+1)·TOPT.
The proof on the tightness of these bounds is omitted due to

space constraint and can be found in the full version [29].

V. EXPERIMENTS

In this section, we conduct experiments and simulations
whose goals are twofold: (i) to validate the theoretical un-
derpinning of moldable task scheduling; and (ii) to compare
the practical performance of various list- and pack-scheduling
schemes under multiple resource types.

Experiments are performed on an Intel Xeon Phi Knights
Landing (KNL) machine with 64 cores and 112GB avail-
able memory, out of which 16GB are high-bandwidth fast
memory (MCDRAM) and the rest are slow memory (DDR).
MCDRAM has ≈5x the bandwidth of DDR [28], thus offering
a higher data-transfer rate. The applications we run are from
a modified version of the Stream benchmark [21] configured
to explore the two available resources of KNL (cores and
fast memory) with different resource allocations. Simulations
are further conducted to project the performance under more
resource types using synthetic workloads that extend some
classical speedup profiles.

A. Evaluated Algorithms

Each algorithm in Section IV-E is evaluated with two
variants, depending on if it is list-based or pack-based. A list-
based algorithm can arrange the tasks according to two widely
applied heuristics: Shortest Processing Time First (SPT) and
Longest Processing Time First (LPT), before scheduling them
as shown in Algorithm 3. For pack-based scheduling, Algo-
rithm 4 applies the Next Fit (NF) heuristic, which assigns a

task to the last pack created. First Fit (FF) is another heuristic
that assigns a task to the first pack in which the task fits. From
the analysis, the approximation ratio can only be improved
with this heuristic. Coupling these heuristics with the two
solutions (direct vs. transformation) under the two scheduling
paradigms (list vs. pack), we have a total of eight scheduling
algorithms that we will evaluate in the experiments.

B. Application Profiling

In order to manage the fast memory as a resource, we
first configure the KNL machine in flat mode [28], where
MCDRAM and DDR together form the entire addressable
memory. We will also explore MCDRAM in cache mode later
(see next subsection). The applications in the Stream bench-
mark are then modified by allocating a specified portion of
their memory footprints on MCDRAM (and the remaining on
DDR), thereby impacting the overall data-transfer efficiency
and hence the execution time. The profiles are obtained by
varying both the number of cores (1-64) and the amount
of fast memory (16GB divided into 20 chunks) allocated to
each application and recording their corresponding execution
times. In addition, we vary the total memory footprints of the
applications to create tasks of different sizes.

Figure 2 shows the profiles of the triad application when
its memory footprint occupies 100%, 80% and 60% of the
fast memory, respectively. Similar profiles are also observed
for the other applications (e.g., write, ddot) in the benchmark.
First, we observe that the execution time is inversely propor-
tional to the number of allocated cores, suggesting that the
application has nearly perfect speedup. Also, the execution
time reduces linearly as more fast memory is allocated to the
point where the application’s memory footprint fits entirely
in fast memory; after that the execution time remains fairly
constant since allocating additional fast memory no longer
benefits the execution. The profiled data for different appli-
cations under various sizes are subsequently used to compute
the schedules by different algorithms.

C. Experimental Results

In order to validate our theoretical analysis and to compare
the performance of different algorithms, we implement a basic
scheduler that executes the tasks according to the schedules
given by these algorithms based on the application profiles.
Each task is launched at the specified time using the specified
amount of resources (cores and fast memory) on the KNL
machine. If any required resource of a task is not available
at start time because of the delays in the preceding tasks
(possibly due to performance variations), the execution of the
task will be correspondingly delayed until there are enough
resources available. We expect the delay (if any) to be small
for each task but the effect can accumulate throughout the
course of the schedule. This additional overhead is assessed
in our experiments.

Figure 3(a) shows the makespans of the eight scheduling
algorithms normalized by the theoretical lower bound (Equa-
tion (1) with s = d; see also Lemma 1) while running 150
tasks. We have also varied the number of tasks but observed
no significant difference in their relative performance. First,
we can see that the scheduling overhead, which manifests
as the difference between the theoretical prediction and the
experimental result, is less than 10% for all algorithms. In
general, list scheduling (left four) and pack scheduling (right



(a) 100% (b) 80% (c) 60%

Figure 2. Profiles of the triad application in Stream benchmark when its memory footprint occupies 100%, 80% and 60% of the entire fast memory.

(a) (b)

Figure 3. (a) Normalized makespans of eight scheduling algorithms; (b)
Makespans of four transform-based scheduling algorithms in three different
resource management configurations.

four) have comparable performance despite that the former
admits a better theoretical bound. Moreover, transform-based
solutions fare slightly better than direct-based solutions due to
the balanced resource requirements of different applications
in the benchmark. Lastly, in line with the intuition and
conventional wisdom, LPT and FF are effective for reducing
the makespan for list and pack scheduling, respectively, except
for the T-LIST algorithm, which incurs a larger overhead with
the LPT variant in the actual execution.

Figure 3(b) further compares the makespans of four
transform-based algorithms when MCDRAM is not used in
flat mode (in which case all data are allocated on the slow
DDR memory), and when KNL is configured in cache mode
(in which case MCDRAM serves as a last-level cache to
DDR). In both cases, only one type of resource (i.e., cores)
is scheduled, and as a result, the transformation produces the
same solutions as the direct-based schedules. Not surprisingly,
cores-only scheduling in flat mode has the worst makespan
for all algorithms, since MCDRAM is completely unutilized
in this case. Having MCDRAM as cache to DDR significantly
improves the makespan, but due to interference from concur-
rently running applications, the makespan is still worse than
scheduling both cores and MCDRAM in flat mode. The results
confirm the benefit of explicitly managing multiple resource
types for improving the application performance.

D. Simulation Results with More Resource Types

In this section, we conduct simulations to project the per-
formance of list-based and pack-based scheduling algorithms
under more resource types. We simulate up to four types of
resources that could represent different types of components,
such as CPUs, GPUs, fast memory, I/O bandwidth, all of
which would be shared among different applications. The total
amount of discrete resource for each type is set to be 64, 32,
16 and 8, respectively. Due to the lack of realistic application

(a) (b)

Figure 4. (a) Normalized makespans and (b) running times of four scheduling
algorithms with up to four different resource types.

profiles under multiple-resource constraints, we generate syn-
thetic workloads by extending two classical speedup functions
(described in Section II-A) to model moldable applications:

• Extended Amdahl’s law [1]: (i) 1/
(
s0 +

∑d
i=1

si
p(i)

)
;

(ii) 1/
(
s0 +

1−s0∏d
i=1 p

(i)

)
; (iii) 1/

(
s0 +maxi=1..d

si
p(i)

)
.

• Extended power law [24], [15]: (i) 1/
(∑d

i=1
si

(p(i))αi

)
;

(ii)
∏d
i=1(p

(i))αi ; (iii) 1/
(
maxi=1..d

si
(p(i))αi

)
.

The extension of both speedup laws comes in three dif-
ferent flavors (i.e., sum, product, max), characterizing how
allocations of different resource types work together to con-
tribute to the overall application speedup (i.e., sequential,
collaborative, concurrent). In the simulations, we generate
150 tasks, each randomly selected from the six extended
profiles. The sequential fraction s0 is uniformly generated in
(0, 0.2], and the parallel fraction si for each resource type i is
uniformly generated in (0, 1] and normalized to make sure that∑d
i=1 si = 1 − s0. The parameter αi is uniformly generated

in [0.3, 1). The total work of a task is chosen uniformly from
a range normalized between 0 and 1 (the relative performance
of the algorithms is not affected by the normalization).

Figure 4 plots the performance distributions of the schedul-
ing algorithms with up to four resource types. Each boxplot
is obtained by running 100 instances. Only LPT (for list) and
FF (for pack) are included, since they have better overall
performance. First, we observe that the normalized makespans
indeed increase with the number of resource types, corroborat-
ing the theoretical analyses, although they are far below those
predicted by the worst-case approximation ratios. Also, list-
based schedules now produce consistently smaller makespans
compared to the pack-based ones, which we believe is due to
the larger variability in the simulated task profiles than that of
the Stream benchmark. This allows the list-based schedules to
explore more effectively the gaps between successive task ex-



ecutions (as reflected by the theoretical bounds). However, the
makespan difference between the two scheduling paradigms
becomes smaller with more resource types, suggesting that
pack-based scheduling is promising when more resource types
are to be managed. Finally, transform-based solutions are
superior compared to the direct-based ones in terms of both
makespan and algorithm running time (for which there are 2-3
orders of magnitude difference with more than two resource
types). In general, for workloads with balanced resource
requirements, transform-based scheduling is expected to offer
both fast and efficient scheduling solutions.

Lastly, we point out that it may seem in Figure 4(a) that
the makespan increases with more resource types. In fact,
it is the ratio to the optimal solution (or lower bound),
not the makespan itself, that increases with d. In practice,
the value of that optimal solution will decrease with more
resource types, since there is more room for optimization.
Hence, scheduling more resource types potentially improves
the overall makespan, which is what we observed experimen-
tally when managing one and two types of resources as shown
in Figure 3(b).

VI. CONCLUSION AND FUTURE WORK

List scheduling and pack scheduling are two scheduling
paradigms that have been studied extensively in the past.
While most prior works focused on scheduling under a single
resource type, in this paper we joined a handful of researchers
on scheduling under multiple-resource constraints in these two
scheduling paradigms. Our analyses and evaluation results
show that scheduling becomes more difficult with increasing
number of resource types, but considering all available re-
sources is essential for improving the application performance.
Despite the better theoretical bound of list scheduling, pack
scheduling has been shown to have comparable or, in some
scenarios, even better performance, especially when more
types of resources are included in the scheduling decision.
The results offer useful insights to the design of emerging
architectures and systems that need to incorporate multiple
dimensions in the resource management.

Future work will be devoted to the design of improved list
or pack scheduling algorithms (or any other practical algo-
rithms beyond the two scheduling paradigms) with multiple-
resource constraints. An immediate open question is whether
the 2d-approximation for list scheduling can be improved,
e.g., to (d+1)-approximation as proven by Garey and Graham
for rigid tasks [10], which is equivalent to Phase 2 of our
list-based algorithm but with fixed resource allocation. Given
our list algorithm’s lower bound of 2d for moldable tasks
(Theorem 3), any improvement will likely be achieved through
the design of more sophisticated resource allocation strategies
(Phase 1) or through a more coupled design/analysis of the
two phases. Prior work [22] on scheduling under a single-
resource type has shed light on some possible directions (e.g.,
by using dual approximation).

ACKNOWLEDGEMENTS

We would like to thank Nicolas Denoyelle for sharing
the code to run the modified Stream benchmark on KNL.
This research is supported in part by the National Science
Foundation under the award CCF 1719674. Finally, we thank
the anonymous reviewers for useful comments.

REFERENCES

[1] G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In AFIPS’67, pages 483–485, 1967.

[2] G. Aupy, M. Shantharam, A. Benoit, Y. Robert, and P. Raghavan. Co-
scheduling algorithms for high-throughput workload execution. Journal
of Scheduling, 19(6):627–640, 2016.

[3] H. Barwick. SKA telescope to generate more data than entire In-
ternet in 2020. https://www.computerworld.com.au/article/392735/ska
telescope generate more data than entire internet 2020/, 2011.

[4] O. Beaumont and A. Guermouche. Task scheduling for parallel
multifrontal methods. In Euro-Par, pages 758–766, 2007.

[5] K. P. Belkhale and P. Banerjee. An approximate algorithm for the
partitionable independent task scheduling problem. In ICPP, pages 72–
75, 1990.

[6] E. G. Coffman, M. R. Garey, D. S. Johnson, and R. E. Tarjan. Perfor-
mance bounds for level-oriented two-dimensional packing algorithms.
SIAM J. Comput., 9(4):808–826, 1980.

[7] M. Dreher and B. Raffin. A flexible framework for asynchronous in
situ and in transit analytics for scientific simulations. In CCGrid, pages
277–286, 2014.

[8] D. G. Feitelson. Job scheduling in multiprogrammed parallel systems
(extended version). IBM Research Report RC19790(87657), 1997.

[9] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir.
Scheduling the I/O of HPC applications under congestion. In IPDPS,
pages 1013–1022, 2015.

[10] M. R. Garey and R. L. Graham. Bounds for multiprocessor scheduling
with resource constraints. SIAM J. Comput., 4(2):187–200, 1975.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1979.

[12] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple
resource types. In Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, pages 323–336, 2011.

[13] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. SIGCOMM Comput.
Commun. Rev., 44(4):455–466, Aug. 2014.

[14] A. Guermouche, L. Marchal, B. Simon, and F. Vivien. Scheduling
trees of malleable tasks for sparse linear algebra. In Proceedings of the
Euro-Par Conference, pages 479–490, 2015.

[15] A. Hartstein, V. Srinivasan, T. Puzak, and P. Emma. On the nature of
cache miss behavior: Is it

√
2? J. Instruction-Level Parallelism, 2008.

[16] Y. He, J. Liu, and H. Sun. Scheduling functionally heterogeneous
systems with utilization balancing. In IPDPS, pages 1187–1198, 2011.

[17] Y. He, H. Sun, and W.-J. Hsu. Adaptive scheduling of parallel jobs on
functionally heterogeneous resources. In ICPP, page 43, 2007.

[18] K. Jansen and L. Porkolab. Linear-time approximation schemes for
scheduling malleable parallel tasks. In SODA, pages 490–498, 1999.

[19] W. Leinberger, G. Karypis, and V. Kumar. Job scheduling in the
presence of multiple resource requirements. In Supercomputing, 1999.

[20] W. Ludwig and P. Tiwari. Scheduling malleable and nonmalleable
parallel tasks. In SODA, pages 167–176, 1994.

[21] J. D. McCalpin. STREAM: Sustainable memory bandwidth in high
performance computers. Technical report, University of Virginia, 1991-
2007. http://www.cs.virginia.edu/stream/.

[22] G. Mounié, C. Rapine, and D. Trystram. A 3/2-approximation algorithm
for scheduling independent monotonic malleable tasks. SIAM J.
Comput., 37(2):401–412, 2007.

[23] M. NoroozOliaee, B. Hamdaoui, M. Guizani, and M. B. Ghorbel.
Online multi-resource scheduling for minimum task completion time
in cloud servers. In INFOCOM Workshops, 2014.

[24] G. N. S. Prasanna and B. R. Musicus. Generalized multiprocessor
scheduling and applications to matrix computations. IEEE Trans.
Parallel Distrib. Syst., 7(6):650––664, 1996.

[25] P. Sanders and J. Speck. Efficient parallel scheduling of malleable tasks.
In IPDPS, pages 1156–1166, 2011.

[26] H. Shachnai and J. J. Turek. Multiresource malleable task scheduling.
Technical report, IBM T.J. Watson Research Center, 1994.

[27] M. Shantharam, Y. Youn, and P. Raghavan. Speedup-aware co-schedules
for efficient workload management. Parallel Proc. Letters, 23(2), 2013.

[28] A. Sodani, R. Gramunt, J. Corbal, H.-S. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y.-C. Liu. Knights Landing: Second-
generation Intel Xeon Phi product. IEEE Micro, 36(2):34–46, 2016.

[29] H. Sun, R. Elghazi, A. Gainaru, G. Aupy, and P. Raghavan. Schedul-
ing parallel tasks under multiple resources: List scheduling vs. pack
scheduling. Research Report RR-9140, INRIA, 2018.

[30] J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms scheduling
parallelizable tasks. In SPAA, 1992.

[31] A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility
for resource management. In JSSPP, pages 44–60, 2003.


