Ensuring Low-Latency and Scalable Data
Dissemination for Smart-City Applications

Shweta Khare*, Hongyang Sun*, Kaiwen Zhang', Julien Gascon-Samson® and Aniruddha Gokhale*
*Vanderbilt University, Nashville, TN 37235, USA; Email: {shweta.p.khare,hongyang.sun,a.gokhale} @vanderbilt.edu
TEcole de technologie supérieure, Montreal, Canada; Email: kaiwen.zhang @etsmtl.ca
iUniversity of British Columbia, Vancouver, Canada; Email: julien.gascon-samson@ece.ubc.ca

Abstract—Low latency and scalable data dissemination is a
critical requirement for many IoT applications, e.g., smart city
applications, which are often built over a publish/subscribe
communication paradigm. Ensuring low latency requires effective
load balancing of the publish/subscribe topics across the different
publishers and subscribers. To that end, we present ongoing work
on a data-driven approach to learning a latency-aware model
of IoT broker loads, and in turn using it to determine broker
replication, and balancing topics across them.

Index Terms—topic-based publish/subscribe, 10T, latency, scal-
ability.

I. INTRODUCTION

Applications from IoT domains, such as smart cities, are
large-scale, continuously online and highly latency-sensitive
in nature. They collect large amounts of monitoring data from
a diverse range of sensors/information sources and process it in
a streaming fashion to provide a variety of real-time services,
e.g., real-time alerts of traffic congestion to drivers. For
instance, at rush hour, there can be thousands of commuting
vehicles in a medium sized city, thereby driving the need for an
efficient, low latency and scalable data dissemination method.

The publish/subscribe (pub/sub) [1] communication
paradigm is highly suitable for the data dissemination needs
of smart-city applications as it offers scalable, anonymous and
decoupled interactions between data producers (publishers)
and data consumers (subscribers). Subscribers simply specify
their interest in the form of subscriptions (i.e., a topic name in
topic-based pub/sub or a predicate in content-based pub/sub).
The pub/sub system then forwards the publication messages
that match the subscriber’s interest/subscription. Such loose
coupling allows the system to scale seamlessly.

Although pub/sub is highly amenable to scalable data dis-
semination, a shared, city-wide pub/sub service that meets the
data dissemination needs of all smart-city applications must be
able to (i) dynamically adapt to changing load while making
efficient use of resources, and (ii) support non-functional QoS
properties, such as bounded latency of data delivery. Very few
pub/sub systems provide these two properties holistically. For
example, IndiQoS [2] ensures bounded latency by reserving
network level resources over a distributed hash table (DHT)-
based peer-to-peer overlay. However, the capability to make
network-level resource reservation is not always available.
Harmony [3] continuously monitors link quality and adapts
routing paths for QoS management over an unstructured peer-

to-peer overlay network. If the underlying transport supports
priority-based scheduling, Harmony can make use of it for
QoS-aware scheduling of messages at the brokers. Instead of
using fixed routing paths, DCRD [4] dynamically switches
among next-hop downstream nodes to bypass failures and to
meet QoS requirements. For each subscriber, brokers maintain
a sorted list of next-hop nodes to choose from. The nodes
are sorted on the basis of two metrics — the expected delay
and the reliability of message delivery — which are computed
for each next-hop node in a distributed manner. On the other
hand, FogMq [5] migrates entire brokers from one fog site
to another to ensure bounded tail latency using a distributed
flocking algorithm.

While these solutions do provide QoS guarantees, they
have been designed for peer-to-peer (structured/unstructured),
multi-hop overlay networks and are focused largely on re-
routing paths for message delivery in a network-aware fashion.
These solutions are not directly applicable to single-hop, single
broker layer, cloud-based pub/sub systems like MQTT, Kafka,
Redis, ActiveMQ, etc, which are increasingly being used in
real-world IoT deployments; e.g., SmartSantander [6].

Latency is affected by both the processing delay at the
broker and the network link characteristics. Therefore, in
single-hop pub/sub systems, managing load at the pub/sub
brokers becomes important for ensuring acceptable end-to-end
data dissemination latencies. In topic-based pub/sub systems,
the load is typically balanced by placing topics on different
brokers, and partitioning their connected endpoints (i.e., pub-
lishers and subscribers) among these brokers. MultiPub [7]
finds optimal placement of topics across cloud data-centers
to ensure per-topic 90th percentile latency of data delivery
for geographically distributed endpoints. However, MultiPub
assumes some local load balancing logic exists at each dat-
acenter site. Kafka supports topic replication to balance load
among brokers, but it has to be done manually. Dynamoth [§]
balances the load dynamically among brokers through topic
partitioning when manually set network thresholds at a broker
are exceeded. Moreover, Dynamoth’s objective is only to
balance the load among brokers, and not with the objective
of ensuring QoS of data delivery.

To overcome the limitations in prior work and to support
a low-latency and scalable pub/sub data dissemination mech-
anism, we present a dynamic data-driven approach to load
balancing at the IoT pub/sub broker. Our approach uses ma-

— — N N w
) 7 S a S

90th percentile latency (ms)

«

.0

300 ® 10 msg/s
® 20 msg/s 35
”E‘ 250 ® 30msg/s
< 40 msg/s - 30
g 50 msg/s £
9 200 60 msg/s 325
L 70 msg/s @
2 150 80 msa/s =20
S ® 90 msg/s =
i 100 ® 100 msg/s § 15
£ 210
<
& 50 £
@ s
0 "
[100 200 300 400 500 600 700 800 0

#subscribers

(a) Subscription size and publication rate

(b) Co-located topic’s publication rate

20 40 60 80 100 0 25 50 75 100 125 150 175

Co-located topic's publication rate Co-located topic's #subscribers

Fig. 1: Sensitivity Analysis for Broker Load Modeling

chine learning of a model of the broker load and its impact on
system latency. The learned broker load model then provides
latency-aware thresholds which we use to dynamically balance
the load among broker replicas.

II. PROPOSED SOLUTION

In order to learn a load model for the brokers, we performed
some sensitivity analysis experiments to understand the im-
pact of various pub/sub features on a topic’s 90th percentile
latency. We have conducted these experiments on our pub/sub
broker [9] implemented using the ZMQ' sockets library. Our
broker implementation is similar to Kafka, where topics are
hosted on a flat layer of brokers managed by the Zookeeper?
coordination service. All experiments were conducted on our
private cluster comprising 40 heterogeneous servers running
Ubuntu 16.04. Given the limited scale of our test-bed, we have
restricted the broker to run on one core to create sufficient load.

As shown in Figure la, we observe that the tail latency
for a topic increases as the number of connected subscribers
increases, for a given publication rate. Tail latency is also
impacted by other co-located topics at the broker. Figure 1b
shows how the tail latency for a topic is impacted with
increasing the rate of publication for another co-located topic.
Similarly, Figure lc shows how the tail latency is affected
by increasing the number of connected subscribers on another
co-located topic. By using input features such as: i) number
of publishers, ii) publication rate, iii) number of subscribers,
iv) number of co-located topics, v) total number of publishers
on all co-located topics, vi) total number of subscribers on all
co-located topics, vii) total publication rate on all co-located
topics, viii) cpu and ix) network utilization of the broker,
we learn a regression model for a topic’s experienced 90th
percentile latency under different broker load configurations.

A periodically executing load balancer then uses this learned
model to identify which topic’s QoS is expected to get violated
and take corrective actions either by replicating that topic and
partitioning its load on another/new broker or by migrating
that topic entirely to another/new broker.

Thttp://zeromq.org/
Zhttps://zookeeper.apache.org/

III. CONCLUSION

To meet data dissemination needs of smart-city applications,
we need a dynamically scalable pub/sub system which en-
sures QoS of data delivery. To this end, we have presented
our proposed data-driven solution to learn performance-aware
thresholds for balancing the topic load across brokers. We plan
to compare our solution to a load-balancing solution [8] based
on empirically set network utilization based threshold.

ACKNOWLEDGMENTS

This work is supported in part by NSF US Ignite 1531079. Any opinions,
findings, and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of NSF.

REFERENCES

[1] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2,
pp. 114-131, Jun. 2003. [Online]. Available: http://doi.acm.org/10.1145/
857076.857078

N. Carvalho, F. Araujo, and L. Rodrigues, “Scalable qos-based event
routing in publish-subscribe systems,” in Network Computing and Ap-
plications, Fourth IEEE International Symposium on. 1EEE, 2005, pp.
101-108.

H. Yang, M. Kim, K. Karenos, F. Ye, and H. Lei, “Message-oriented
middleware with qos awareness,” in /CSOC/ServiceWave, 2009.

[4] S. Guo, K. Karenos, M. Kim, H. Lei, and J. Reason, “Delay-cognizant
reliable delivery for publish/subscribe overlay networks,” in 2011 31st
International Conference on Distributed Computing Systems, June 2011,
pp. 403-412.

S. Abdelwahab and B. Hamdaoui, “Fogmq: A message broker system
for enabling distributed, internet-scale iot applications over heterogeneous
cloud platforms,” arXiv preprint arXiv:1610.00620, 2016.

L. Sanchez, L. Muioz, J. A. Galache, P. Sotres, J. R. Santana,
V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis, and
D. Pfisterer, “Smartsantander: Iot experimentation over a smart city
testbed,” Comput. Netw., vol. 61, pp. 217-238, Mar. 2014. [Online].
Available: http://dx.doi.org/10.1016/j.bjp.2013.12.020

J. Gascon-Samson, J. Kienzle, and B. Kemme, “Multipub: Latency and
cost-aware global-scale cloud publish/subscribe,” in 2017 IEEE 37th
International Conference on Distributed Computing Systems (ICDCS),
June 2017, pp. 2075-2082.

J. Gascon-Samson, F. P. Garcia, B. Kemme, and J. Kienzle, “Dynamoth:
A scalable pub/sub middleware for latency-constrained applications in
the cloud,” in 2015 IEEE 35th International Conference on Distributed
Computing Systems, June 2015, pp. 486—496.

K. An, S. Khare, A. Gokhale, and A. Hakiri, “An autonomous and
dynamic coordination and discovery service for wide-area peer-to-peer
publish/subscribe: Experience paper,” in Proceedings of the 11th ACM
International Conference on Distributed and Event-based Systems, ser.
DEBS ’17. New York, NY, USA: ACM, 2017, pp. 239-248. [Online].
Available: http://doi.acm.org/10.1145/3093742.3093910

[2

—

3

=

[5

—

[6

—_

[7

—

[8

—

[9

—

200

(c) Co-located topic’s subscription size

