
Identifying the Right Replication Level
to Detect and Correct Silent Errors at Scale

Anne Benoit

LIP, ENS Lyon, France

anne.benoit@ens-lyon.fr

Aurélien Cavelan

LIP, ENS Lyon, France

aurelien.cavelan@ens-lyon.fr

Franck Cappello

Argonne National Laboratory, USA

cappello@mcs.anl.gov

Padma Raghavan

Vanderbilt University, USA

padma.raghavan@vanderbilt.edu

Yves Robert

LIP, ENS Lyon, France

Univ. Tenn. Knoxville, USA

yves.robert@inria.fr

Hongyang Sun

Vanderbilt University, USA

hongyang.sun@vanderbilt.edu

ABSTRACT
This paper provides a model and an analytical study of replication

as a technique to detect and correct silent errors. Although other

detection techniques exist for HPC applications, based on algo-

rithms (ABFT), invariant preservation or data analytics, replication

remains the most transparent and least intrusive technique. We ex-

plore the right level (duplication, triplication or more) of replication

needed to e�ciently detect and correct silent errors. Replication

is combined with checkpointing and comes with two �avors: pro-
cess replication and group replication. Process replication applies to

message-passing applications with communicating processes. Each

process is replicated, and the platform is composed of process pairs,

or triplets. Group replication applies to black-box applications,

whose parallel execution is replicated several times. The platform

is partitioned into two halves (or three thirds). In both scenarios,

results are compared before each checkpoint, which is taken only

when both results (duplication) or two out of three results (triplica-

tion) coincide. If not, one or more silent errors have been detected,

and the application rolls back to the last checkpoint. We provide a

detailed analytical study of both scenarios, with formulas to decide,

for each scenario, the optimal parameters as a function of the error

rate, checkpoint cost, and platform size. We also report a set of

extensive simulation results that corroborates the analytical model.

ACM Reference format:
Anne Benoit, Aurélien Cavelan, Franck Cappello, Padma Raghavan, Yves

Robert, and Hongyang Sun. 2017. Identifying the Right Replication Level

to Detect and Correct Silent Errors at Scale. In Proceedings of FTXS’17,
Washington, DC, USA, June 26, 2017, 8 pages.

DOI: http://dx.doi.org/10.1145/3086157.3086162

1 INTRODUCTION
Triple Modular Redundancy, or TMR [23], is the standard fault-

tolerance approach for critical systems, such as embedded or aero-

nautical devices [1]. With TMR, computations are executed three

times, and a majority voting is conducted to select the correct result

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior speci�c permission and/or a

fee. Request permissions from permissions@acm.org.

FTXS’17, Washington, DC, USA
© 2017 ACM. 978-1-4503-5001-3/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3086157.3086162

out of the three available ones. Indeed, if two or more results agree,

they are declared correct, because the probability of two or more

errors leading to the same wrong result is assumed so low that it

can be ignored. While triplication seems very expensive in terms

of resources, anybody sitting in a plane would heartily agree that

it is worth the price.

On the contrary, duplication, let alone triplication, has a bad

reputation in the High Performance Computing (HPC) community.

Who would be ready to waste half or two-thirds of precious com-

puting resources? However, despite its high cost, several authors

have been advocating the use of duplication in HPC in the recent

years [15, 17, 28, 37]. In a nutshell, this is because platform sizes

have become so large that fail-stop errors are likely to strike at a

high rate during application execution. More precisely, the MTBF

(Mean Time Between Failures) µP of the platform decreases linearly

with the number of processors P , since µP =
µind

P , where µ
ind

is the

MTBF of each individual component (see Proposition 1.2 in [20]).

Take µ
ind
= 10 years as an example. If P = 10

5
then µP ≈ 50

minutes and if P = 10
6

then µP ≈ 5 minutes: from the point of view

of fault-tolerance, scale is the enemy. Given any value of µ
ind

, there

is a threshold value for the number of processors above which

platform throughput will decrease [14, 17, 27, 29]: the platform

MTBF becomes so small that the applications experience too many

failures, hence too many recoveries and re-execution delays, to

progress e�ciently. All this explains why duplication has been con-

sidered for HPC applications despite its cost. The authors in [17]

propose process replication by which each process in a parallel MPI

(Message Passing Interface) application is duplicated on multiple

physical processors while maintaining synchronous execution of

the replicas. This approach is e�ective in terms of fault-tolerance

because the MTBF of a set of two replicas (which is the average

delay for failures to strike both processors in the replica set) is much

larger than the MTBF of a single processor.

Process replication may not always be a feasible option. Process

replication features must be provided by the application. Some

prototype MPI implementations [4, 17, 18] are convincing proofs

of concept and do provide such capabilities. However, many other

programming frameworks (not only MPI-like libraries and run-

times, but also concurrent objects, distributed components, work-

�ows, PGAS environments, algorithmic skeletons) do not provide

an equivalent to transparent process replication for the purpose of

fault-tolerance, and enhancing them with transparent replication

may be non-trivial. When transparent replication is not (yet) pro-

vided by the environment or runtime system, one solution could

be to implement it explicitly within the application, but this is a

labor-intensive process especially for legacy applications. Another

approach introduced in [8] is group replication, a technique that

can be used whenever process replication is not available. Group

replication is agnostic to the parallel programming model, and

thus views the application as an unmodi�ed black box. The only

requirement is that the application can be started from a saved

checkpoint �le. Group replication consists in executing multiple

application instances concurrently. For example, two distinct P-

process application instances could be executed on a 2P-processor

platform. At �rst glance, it may seem paradoxical that better per-

formance can be achieved by using group duplication. After all,

in the above example, 50% of the platform is “wasted” to perform

redundant computation. The key point here is that each application

instance runs at a smaller scale. As a result, each instance can use

lower checkpointing frequency, and can thus have better parallel

e�ciency in the presence of faults, when compared to a single appli-

cation instance running at full scale. In some cases, the application

makespan can then be comparable to, or even shorter than that

obtained when running a single application instance. In the end, the

cost of wasting processor power for redundant computation can be

o�set by the bene�t of reduced checkpointing frequency. Further-

more, in group replication, once an instance saves a checkpoint, the

other instance can use this checkpoint immediately to “jump ahead”

in its execution. Hence, group replication is more e�cient than the

mere independent execution of several instances: each time one in-

stance successfully completes a given “chunk of work”, all the other

instances immediately bene�t from this success. To implement

group replication, the runtime system needs to perform the typical

operations needed for system-assisted checkpoint/restart: deter-

mining checkpointing frequencies for each application instance,

causing checkpoints to be saved, detecting application failures, and

restarting an application instance from a saved checkpoint after a

failure. The only additional feature is that the system must be able

to stop an instance and let it resume execution from a checkpoint

�le produced by another instance as soon as it is available.

Process or group replication has been mainly proposed in HPC

to cope with fail-stop errors. However, another challenge is repre-

sented by silent errors, or silent data corruptions, whose threat can

no longer be ignored [24, 26, 38]. There are several causes of silent

errors, such as cosmic radiation, packaging pollution, among others.

Silent errors can strike the cache and memory (bit �ips) as well

as CPU operations; in the latter case they resemble �oating-point

errors due to improper rounding, but have a dramatically larger im-

pact because any bit of the result, not only low-order mantissa bits,

can be corrupted. In contrast to a fail-stop error whose detection is

immediate, a silent error is identi�ed only when the corrupted data

leads to an unusual application behavior. Such detection latency

raises a new challenge: if the error struck before the last check-

point, and is detected after that checkpoint, then the checkpoint is

corrupted and cannot be used for rollback. To distinguish from fail-

stop failures, we use MTBE (Mean Time Between Errors) instead

of MTBF to characterize the rate of silent errors.

To address the problem of silent errors, many application-speci�c

detectors, or veri�cation mechanisms, have been proposed (see

Section 2 for a survey). It is not clear, however, whether a special-

purpose detector can be designed for each scienti�c application. In

addition, application-speci�c veri�cation mechanisms only protect

from some types of error sources, and fail to provide accurate

and e�cient detection of all silent errors. In fact, providing such

detectors for scienti�c applications has been identi�ed as one of

the hardest challenges
1

towards extreme-scale computing [6, 7].

Altogether, silent errors call for revisiting replication in the

framework of scienti�c application executing on large-scale HPC

platforms. Because replication is now applied at the process level,

scale becomes an even harder-to-�ght enemy. Existing processor

count ranges to about 10
5

on the K-computer and TaihuLight sys-

tems. The number of processors could increase further to 10
6

(hence

10
6

or more processes) on future Exascale platforms, with billions

of threads [12]. In addition, the probability of several errors striking

during an execution can get signi�cant, depending upon whether

or not circuit manufacturers increase signi�cantly the protection

of the logic, latch/�ip-�ops and static arrays in the processor. In a

recent paper [31], the authors consider that with signi�cant more

protection (more hardware, more power consumption), the FIT
2

rate for undetected errors on a processor circuit could be main-

tained to around 20. But without additional protection compared

to the current situation, the FIT rate for undetected errors could

be as high as 5,000 (or 1 error every 200,000 hours). Combining 10

million devices with this FIT rate would result in a silent error on

the system every 72 seconds.

This work aims at providing a quantitative assessment of the

potential of replication to mitigate such a threat. Speci�cally, the

main contributions of this work are:

• an analytical model to study the performance of all replication

scenarios against silent errors, namely, duplication, triplication, or

more for process and group replications;

• closed-form formulas that give the optimal checkpointing period

and optimal process number as a function of the error rate, check-

point cost, and platform size;

• a set of simulation results that corroborate the analytical model.

The rest of the paper is organized as follows. Section 2 surveys

the related work. We introduce the performance model in Section 3,

and derive a general execution time formula in Section 4. The

analysis for process replication is presented in Section 5, followed

by the analysis for group replication in Section 6. Section 7 is

devoted to the simulation results. Finally, we provide concluding

remarks and directions for future work in Section 8.

2 RELATEDWORK
Replication for fail-stop errors. Checkpointing policies have

been widely studied. We refer to [20] for a survey of various proto-

cols and the derivation of the Young’s and Daly’s formula [10, 35]

for the optimal checkpointing periods. Recent advances include

multi-level approaches, or the use of SSD or NVRAM as secondary

storage [7]. Combining replication with checkpointing has been

proposed in [15, 29, 37] for HPC platforms, and in [22, 34] for grid

computing.

The use of redundant MPI processes is analyzed in [9, 16, 17].

In particular, the work by Ferreira et al. [17] has studied the use

1
More generally, trustworthy computing, which aims at guaranteeing the correctness

of the results of a long-lasting computation on a large-scale supercomputer, has

received considerable attention recently [5].

2
The Failures in Time (FIT) rate of a device is the number of failures that can be

expected in one billion (10
9
) device-hours of operation.

of process replication for MPI applications, using two replicas per

MPI process. They provide a theoretical analysis of parallel e�-

ciency, an MPI implementation that supports transparent process

replication (including failure detection, consistent message order-

ing among replicas, etc.), and a set of experimental and simulation

results. Partial redundancy is studied in [13, 32] (in combination

with coordinated checkpointing) to decrease the overhead of full

replication. Adaptive redundancy is introduced in [19], where a

subset of processes is dynamically selected for replication.

Thread-level replication has been investigated in [36]. This work

targets process-level replication, so as to detect (and correct) silent

errors striking in all communication-related operations.

Ni et al. [25] introduce duplication to cope with both fail-stop

and silent errors. Their pioneering paper contains many inter-

esting results but di�ers from this work as follows: (i) they limit

themselves to perfectly parallel applications while we investigate

speedup pro�les that obey Amdahl’s law; (ii) they do not investigate

triplication; and (iii) they compute an upper bound on the optimal

period and do not determine optimal processor counts.

Finally, we note that RedMPI [18] originally deals with silent

errors, and that Subasi et al. [33] introduce task replication to detect

and correct silent errors for work�ow applications (while we deal

with general applications in this paper).

Silent error detection and correction. Application-speci�c in-

formation enables ad-hoc solutions, which dramatically decrease

the cost of error detection. Algorithm-based fault tolerance (ABFT) [3,

21, 30] is a well-known technique, which uses checksums to detect

up to a certain number of errors in linear algebra kernels. Unfor-

tunately, ABFT can only protect datasets in linear algebra kernels,

and it must be implemented for each di�erent kernel, which incurs

a large amount of work for large HPC applications.

While many application-speci�c detectors are proposed (see

the companion research report [2] for more related work), our

approach is agnostic of the application characteristics. The only

information is whether we can use process replication. If not, we see

the application as a black box and can use only group replication.

Table 1: List of notations.

Parameters
T Length (or period) of a pattern

P Number of processes allocated to an application

n Number of (process or group) replicas

S (P) Speedup function of an application

H (P) = 1

S (P) Error-free execution overhead

En (T , P) Expected execution time of a pattern

Hn (T , P) Expected execution overhead of a pattern

Sn (T , P) Expected speedup function of a pattern

λ = 1

µ
ind

Silent error rate of an individual process

Pn (T , P) Silent error probability of a pattern

C Checkpointing cost

R Recovery cost

V Veri�cation cost (comparison of replicas)

3 MODEL
This section presents the analytical model for evaluating the per-

formance of di�erent replication scenarios. The model is classical,

similar to those of the literature for replication [17], only with a

di�erent objective (quantifying replication for silent errors). Table

1 summarizes the main notations used in the paper. Let µ
ind

denote

the MTBE of an individual processor or process
3

of the system, so

λ = 1

µind

is the silent error rate of the processor.

The error rate for a collection of P processors is then given by

λP =
1

µP =
P
µind

= λP [20]. Assuming that the error arrivals follow

Exponential distribution, the probability that a computation hit by

a silent error during time T on P processes is given by:

P(T , P) = 1 − e−λPT .

Consider long-lasting HPC applications that execute for hours

or even days on a large-scale platform. Resilience is enforced by

the combined use of replication and periodic checkpointing. Be-

fore each checkpoint, the results of di�erent replicas are compared.

Only when both results (for duplication) or two out of three results

(for triplication) coincide
4
, in which case a consensus is said to be

reached, the checkpoint is taken. Otherwise, silent errors are as-

sumed to have been detected, and they cannot be corrected through

consensus. The application then rolls back to the last checkpoint.

There are two di�erent types of replications:

(1) Process replication: Each process of the application is replicated,

and the results of di�erent processes are independently compared.

A rollback is needed when at least one process has failed to reach a

consensus;

(2) Group replication: The entire application (as a black box) is repli-

cated, and the results of all replicas (as a whole) are compared. A

rollback is needed when these group replicas fail to reach a consen-

sus.

The computational chunk between two checkpoints is called a

periodic pattern. For a replication scenario with n replicas, the objec-

tive is to minimize the expected total execution time (or makespan)

of an application by �nding the optimal pattern parameters:

• T : length (or period) of the pattern;

• P : number of processes allocated to the application.

Indeed, for long-lasting applications, it su�ces to focus on just

one pattern, since the pattern repeats itself over time. To see this,

letW
total

denote the total amount of work of the application and

suppose the application has a speedup function S(P)when executed

on P processors. In this paper, we focus on a speedup function that

obeys Amdahl’s law
5
:

S(P) = 1

α + 1−α
P
, (1)

where α ∈ [0, 1] denotes the sequential fraction of the applica-

tion that cannot be parallelized. For convenience, we also de�ne

H (P) = 1

S (P) to be the execution overhead. For a pattern of lengthT

and run by P processes, the amount of work done in a pattern is

thereforeWpattern = T · S(P), and the total number of patterns in

the application can be approximated as m = Wtotal

Wpattern

=
Wtotal

T ·S (P) =
Wtotal

T H (P). Now, let En (T , P) denote the expected execution time

of the pattern with n replicas in either replication scenario. De�ne

3
We assume that each process is executed by a dedicated processor, hence use “proces-

sor” and “process” interchangeably. We also use MTBE instead of MTBF to emphasize

that we deal with (silent) errors, not failures.

4
For n > 3 replicas, the results of k replicas should coincide, where 2 ≤ k < n is a

design parameter set by the system to control the level of reliability. k = b n
2
c + 1 is a

widely-used choice (majority voting).

5
The model is generally applicable to other speedup functions as well.

Hn (T , P) = En (T ,P)T H (P) to be the expected execution overhead of

the pattern, and Sn (T , P) = 1

Hn (T ,P) the expected speedup. The ex-

pected makespan of the application can then be written as E
total
≈

En (T , P)m = En (T , P)Wtotal

T H (P) = Hn (T , P) ·Wtotal
=

Wtotal

Sn (T ,P) .
This shows that the optimal expected makespan can be achieved

by minimizing the expected execution overhead of a pattern, or

equivalently, maximizing the expected speedup.

Now, we describe a model for the costs of checkpoint, recovery

and consensus veri�cation. First, the checkpoint cost clearly de-

pends on the protocol and storage type. Note that only the result of

one replica needs to be checkpointed, so the cost does not increase

with the number of replicas. To save the application’s memory

footprint M to the storage system using P processes, we envision

the following two scenarios:

• C = M
τio : In this case, checkpoints are being written to

the remote storage system, whose bandwidth is the I/O

bottleneck. Here, τio is the remote I/O bandwidth.

• C = M
τnet P : This case corresponds to in-memory check-

points, where each process stores
M
P data locally (e.g., on

SSDs). Here, τnet is the process network bandwidth.

The recovery cost is assumed to be the same as the checkpointing

cost, i.e., R = C , as it involves the same I/O operations. This is

a common assumption [24], although practical recovery cost can

be somewhat smaller than the checkpoint cost [11]. Finally, veri-

fying consensus is performed by communicating and comparing

M
P data stored on each process, which can be executed concur-

rently by all process pairs (or triplets). Hence, the veri�cation

cost satis�es V = O(MP). Overall, we use the following general

expression to account for the combined cost of veri�cation and

checkpoint/recovery:

V +C = c +
d

P
, (2)

where c and d are constants that depend on the application memory

footprint, checkpointing protocol, network or I/O bandwidth, etc.

Equation (2) is convenient in terms of analysis as we will see in

the subsequent sections. Here, c = 0 corresponds to the second

checkpointing scenario discussed above.

4 EXPECTED EXECUTION TIME
In this section, we compute the expected execution time of a peri-

odic pattern, which will be used in the next two sections to derive

the optimal pattern parameters.

Theorem 4.1. The expected time to execute a periodic pattern of
length T using P processes and n replicas can be expressed as

En (T , P) = T +V +C +
Pn (T , P)

1 − Pn (T , P)
(T +V + R) , (3)

where Pn (T , P) denotes the probability that the execution fails due to
silent errors striking during the pattern and we have to roll back to
the last checkpoint.

Proof. Since replicas are synchronized, we can generally ex-

press the expected execution time as follows:

En (T , P) = T +V + Pn (T , P)
(
R + En (T , P)

)
+

(
1 − Pn (T , P)

)
C . (4)

First, the pattern of lengthT is executed followed by the veri�cation

(through comparison and/or voting), which incurs cost V . With

probability Pn (T , P), the pattern fails due to silent errors. In this

case, we need to re-execute the pattern after performing a recovery

from the last checkpoint with cost R. Otherwise, with probability

1−Pn (T , P), the execution succeeds and the checkpoint with costC
is taken at the end of the pattern. Now, solving for En (T , P) from

Equation (4), we can obtain the expected execution time of the

pattern as shown in Equation (3). �

Remarks. Theorem 4.1 is applicable to both process replication

and group replication. The only di�erence lies in the computation

of the failure probability Pn (T , P), which depends not only on the

replication scenario but also on the number of replicas n.

5 PROCESS REPLICATION
In this section, we consider process replication. We �rst derive the

optimal computing patterns when each process of the application

is duplicated (Section 5.1) and triplicated (Section 5.2), respectively.

We also generalize the results to an arbitrary but constant number of

replications per process under a general process replication frame-

work. Proofs are available in the companion research report [2].

5.1 Process duplication
We start with process duplication, that is, each process has two

replicas. The following lemma shows the failure probability of a

given computing pattern in this case.

Lemma 5.1. Using process duplication, the failure probability of a
computing pattern of length T and with P processes is given by

P
prc

2
(T , P) = 1 − e−2λT P . (5)

Using the failure probability in Lemma 5.1, we derive the optimal

computing pattern for process duplication as shown in the following

theorem. Recall that the application speedup follows Amdahl’s law

as shown in Equation (1) and the cost of veri�cation and checkpoint

is modeled by Equation (2).

Theorem 5.2. A �rst-order approximation to the optimal number
of processes for an application with 2 replicas per process is given by

Popt = min


Q

2

,

(
1

2

(
1 − α
α

)
2

1

cλ

) 1

3
 , (6)

whereQ denotes the total number of available processes in the system.
The associated optimal checkpointing period and the expected speedup
function of the application are

Topt(Popt) =
(
V +C

2λPopt

) 1

2

, S
prc

2
(Popt) =

S(Popt)

1 + 2
(
2λ(V +C)Popt

) 1

2

(7)

5.2 Process triplication and general replication
Now, we consider process triplication, that is, each process has

three replicas. This is the smallest number of replicas that allows

an application to recover from silent errors through majority voting

instead of rolling back to the last checkpoint.

Lemma 5.3. Using process triplication, the failure probability of a
computing pattern of length T and with P processes is given by

P
prc

3
(T , P) = 1 −

(
3e−2λT − 2e−3λT

)P
. (8)

Theorem 5.4. A �rst-order approximation to the optimal number
of processes for an application with 3 replicas per process is given by

Popt = min


Q

3

,

(
4

3

(
1 − α
α

)
3
(
1

cλ

)
2

) 1

4
 , (9)

whereQ denotes the total number of available processes in the system.
The associated optimal checkpointing period and the expected speedup
function of the application are

Topt(Popt) =
(
V +C

6λ2Popt

) 1

3

, S
prc

3
(Popt) =

S(Popt)

1 + 3
(
3

4
(λ(V +C))2 Popt

) 1

3

(10)

Compared with duplication, the ability to correct errors in trip-

lication allows checkpoints to be taken less frequently. In terms

of expected speedup, triplication su�ers from a smaller error-free

speedup (
Q
3

vs
Q
2

for perfectly parallel applications, i.e., α = 0)

due to the use of fewer concurrent processes to perform useful

work, but also has a smaller error-induced denominator, especially

on platforms with a large number of processes Q . In Section 7,

we conduct simulations to evaluate this trade-o� and compare the

performance of duplication and triplication.

Formulas for a general process replication framework with n
replica groups, out of whichk of them must agree to avoid a rollback,

are given in the extended version [2]. Results apply for any k ,

including the two natural choices k = 2 and k = b n
2
c + 1.

6 GROUP REPLICATION
In this section, we consider group replication. Recall that, unlike

process replication where the results of each process from di�erent

replicas are independently compared, group replication compares

the outputs of the di�erent groups viewed as independent black-box

applications. First, we make the following technical observation,

which establishes the relationship between the two replication

mechanisms from the resilience point of view.

Observation 1. Running an application using group replication
with n replicas, where each replica has P processes and each process
has error rate λ, has the same failure probability as running it using
process replication with one process, which has error rate λP and is
replicated n times.

The above observation allows us to compute the failure prob-

ability for group replication by deriving from the corresponding

formulas under process replication while setting P = 1 and λ = λP .

The rest of this section shows the results for duplication, triplica-

tion, and a general group replication framework. Proofs are similar

to those in process replication, and are hence omitted.

6.1 Group duplication
By applying Observation 1 on Lemma 5.1, we can get the failure

probability for a given pattern under group duplication as follows.

Lemma 6.1. Using group duplication, the failure probability of a
computing pattern of length T and with P processes is given by

P
grp

2
(T , P) = 1 − e−2λT P . (11)

This leads us to the following theorem on the optimal pattern:

Theorem 6.2. A �rst-order approximation to the optimal number
of processes for an application with 2 replica groups is given by

Popt = min


Q

2

,

(
1

2

(
1 − α
α

)
2

1

cλ

) 1

3
 , (12)

whereQ denotes the total number of available processes in the system.
The associated optimal checkpointing period and the expected speedup
function of the application are

Topt(Popt) =
(
V +C

2λPopt

) 1

2

, S
grp

2
(Popt) =

S(Popt)

1 + 2
(
2λ(V +C)Popt

) 1

2

(13)

Remarks. The result is identical to that of process duplication.

Indeed, in both cases, a single silent error that strikes any of the

running processes will cause the whole application to fail.

6.2 Group triplication and general replication
Again, applying Observation 1 on Lemma 5.3, we can get the failure

probability for a given pattern under group triplication, and then

determine the optimal pattern.

Lemma 6.3. Using group triplication, the failure probability of a
computing pattern of length T and with P processes is given by

P
grp

3
(T , P) = 1 −

(
3e−2λT P − 2e−3λT P

)
. (14)

Theorem 6.4. A �rst-order approximation to the optimal number
of processes for an application with 3 replica groups is given by

Popt = min


Q

3

,

(
1

6

(
1 − α
α

)
3
(
1

cλ

)
2

) 1

5
 , (15)

where Q denotes the total number of available processes in the sys-
tem. The associated optimal checkpointing period and the expected
execution overhead are

Topt(Popt) =
(

V +C

6(λPopt)2

) 1

3

, S
grp

3
(Popt) =

S(Popt)

1 + 3
(
3

4

(
λ(V +C)Popt

)
2

) 1

3

(16)

Remarks. Compared to the result of process triplication (Theo-

rem 5.4) and under the same condition (e.g., α = 0 so both scenarios

allocate the same number of Popt =
Q
3

processes to each replica),

group triplication needs to place checkpoints more frequently yet

enjoys a smaller execution speedup. This provides a theoretical

explanation to the common understanding that group replication

in general cannot recover from some error combinations that its

process counterpart is capable of, making the latter a superior repli-

cation mechanism provided that it can be feasibly implemented.

Formulas for a general group replication framework with n
replica groups, out of which k of them must agree to avoid a roll-

back, are given in the extended version [2].

7 SIMULATIONS
We conduct a set of simulations whose goal is twofold: (i) vali-

date the accuracy of the theoretical study; and (ii) evaluate the

e�ciency of both process and group replication under di�erent

scenarios at extreme scale. The simulator is publicly available at

http://perso.ens-lyon.fr/aurelien.cavelan/replication.zip so that in-

terested readers can instantiate their preferred scenarios and repeat

the same simulations for reproducibility purpose.

7.1 Simulation setup
The simulator has been designed to simulate each process indi-

vidually, and each process has its own error trace. A simulation

works as follows: we feed the simulator with the model parameters

µ
ind

, Q , C , V , R, and α , and we compute the associated optimal

number of processes Popt and the optimal checkpointing period

Topt(Popt) using the corresponding model equations. For each run,

the simulator outputs the e�ciency, de�ned as

S(Popt)
Q , as well as

the average number of errors and the average number of recoveries

per million CPU hours of work. Then, for each of the following

scenarios, we compare the simulated e�ciency to the theoretical

value, obtained using the model equations for S(Popt).
As suggested by Observation 1, process and group replications

with n = 2 lead to identical results, so we have merged them

together. Intuitively, this is explained by the fact that in both cases,

a single error cannot be corrected, and requires to recover from the

last checkpoint. In the following, we set the cost of recovery to be

the same as the checkpoint cost (as discussed in Section 3), and we

set the costV +C according the values of c and d as in Equation (2).

We consider di�erent Mean Time Between Errors (MTBE), ranging

from 10
6

seconds (≈ 11 days) down to 10
2

seconds (< 2 minutes)

for Q = 10
6

processes, matching the numbers in [31].

7.2 Impacts ofMTBE and checkpoint cost
Figure 1 presents the impact of the MTBE on the e�ciency of both

duplication and triplication for three di�erent checkpoint costs,

but using the same value α = 10
−6

for the sequential fraction

of the application (see next section for the impact of varying α).

The �rst row of plots is obtained with a cost of 30 minutes (i.e.

c = 1, 800,d = 0), the second row with a cost of 60 seconds (i.e.

c = 60,d = 0), and the last row with c = 0,d = 10
7
, which

correspond to a checkpoint cost of 20 seconds for duplication with

Q
2

processes and 30 seconds for triplication with
Q
3

processes. In

addition to the e�ciency, we provide the average number of errors

and recoveries per million hours of work, the optimal checkpointing

period Topt(Popt) and the optimal number of processes Popt.

E�ciency. First, we observe in the �rst column that the di�er-

ence between the theoretical e�ciency and the simulated e�ciency

remains small (< 5% absolute di�erence), which shows the accu-

racy of the �rst-order approximation. Then, with very few errors

(MTBE = 10
6
), we observe that duplication is always better than

triplication. This is as expected, since the maximum e�ciency for

duplication is 0.5 (assuming α = 0 and no error), while the max-

imum e�ciency for triplication is 0.33. However, as the MTBE
decreases, triplication becomes more attractive and eventually out-

performs duplication. With a checkpoint cost of 30 minutes (�rst

row), the MTBE required is around 28 hours for process triplication

to win and 20 hours for group triplication to win. With smaller

checkpoint costs, such as 60 seconds (second row) and 30 seconds

(third row), checkpoints can be more frequent and the MTBE re-

quired for triplication to win is pushed down to a couple of hours

and a couple of minutes, respectively.

Number of errors and recoveries. The second column presents

the number of errors and the corresponding number of recoveries

per million hours of work. The number of errors is always higher

than the number of recoveries, because multiple errors can occur

during a period (before the checkpoint, which is the point of de-

tection), causing a single recovery. At MTBE = 10
2
, almost half

of the errors that occurred with duplication were actually hidden

behind another error. Even more errors were hidden with group

triplication, since one more error (in a di�erent replica) is required

to cause a recovery. Finally, (almost) all errors were hidden with

process replication, which is able to handle many errors, as long as

they strike in di�erent processes.

Optimal checkpointing period. The third column shows the

optimal length of the pattern. In order to cope with the increasing

number of errors and recoveries, the length of the optimal period

becomes smaller. Note that the length of the period for group

triplication is comparable to that for duplication, around one day

when MTBE = 10
6

down to a couple of minutes when MTBE = 10
2
.

However, the length of the pattern for process triplication is always

higher by several orders of magnitude, from more than 10 days

when MTBE = 10
6

down to a couple of hours when MTBE = 10
2
.

Optimal number of processes. With α = 10
−6

, the application

has ample parallelism, so the optimal number of processes to use is

always
Q
2
= 5 · 105 for duplication and

Q
3
≈ 3.3 · 105 for triplica-

tion, except when MTBE = 10
2

and c = 1, 800, where the optimal

number of processes for duplication is ≈ 3 · 105 and the optimal

number of processes for group triplication is ≈ 2 · 105.

7.3 Impact of sequential fraction (Amdahl)
Figure 2 presents two additional simulation results for α = 10

−7

and α = 10
−5

. With a small fraction of sequential work (left plots),

the e�ciency is improved (≈ 85% of the maximum e�ciency for

duplication and ≈ 95% for triplication at MTBE = 10
6
), and both

duplication and triplication use all processors available. On the

contrary, with a higher sequential fraction of work (right plots),

the e�ciency drops (< 20% of the maximum e�ciency for dupli-

cation and < 30% for triplication at MTBE = 10
6
), and using more

processes does not improve the e�ciency and only contributes to

increasing the number of errors. Therefore, these results suggest

that even when using replication or triplication, there comes a point

where it is no longer bene�cial to use all processors available. In

this example, whenMTBE = 10
2
, duplication and group triplication

would use fewer than 2 · 105 processes (one �fth of the available

resources). Process triplication, on the other hand, still utilizes all

the resources and outperforms the other two schemes in terms of

the e�ciency across the whole range of system MTBE.

7.4 Impact of number of processes
Figure 3 shows the impact of the number of processes on the simu-

lated e�ciency of di�erent replication scenarios. In addition, we

also show (as big dots) the theoretical e�ciency obtained with

the optimal number of processes from Theorems 5.2, 5.4 and 6.4.

By varying the number of processes, we �nd that the simulated

optimum (that yields the best e�ciency) matches our theoretical

optimal number of processes closely. We can also see that process

triplication scales very well with increasing number of processes

http://perso.ens-lyon.fr/aurelien.cavelan/replication.zip

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

Figure 1: Impact of System MTBE on the e�ciency with c = 1, 800,d = 0 (top), c = 60,d = 0 (middle), c = 0,d = 107 (bottom) and
α =10−6.

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

Figure 2: Impact of sequential fraction (in Amdahl’s Law) on e�ciency and optimal number of processes with α = 10−7 (left)
and α =10−5 (right).

up to Q = 10
6
. As opposed to group triplication, which has to

recover from a checkpoint if just two errors strike in two di�erent

replicas, process triplication bene�ts from having an additional

process: from a resilience point of view, each replica acts as a bu�er

to handle one more error, and the probability that two errors strike

two replicas of the same process decreases, thereby improving the

e�ciency.

7.5 Summary
Results suggest that duplication is more e�cient than triplication

for high MTBEs (e.g., 10
6

seconds). Process triplication, when avail-

able, is always more e�cient for smaller MTBEs: its e�ciency

5 · 10
4

10 · 10
4

15 · 10
4

20 · 10
4

25 · 10
4

30 · 10
4

35 · 10
4

40 · 10
4

45 · 10
4

Number of processes

0.00

0.02

0.04

0.06

0.08

0.10

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Opt.
Proc Trip. Opt.
Group Trip. Opt.

5 · 10
4

10 · 10
4

15 · 10
4

20 · 10
4

25 · 10
4

30 · 10
4

35 · 10
4

40 · 10
4

45 · 10
4

Number of processes

0.00

0.02

0.04

0.06

0.08

0.10

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Opt.
Proc Trip. Opt.
Group Trip. Opt.

Figure 3: Impact of the number of processes on the e�ciency
with MTBE = 10

4 (left), MTBE = 10
3 (right), Q = 10

6, c =
1n800,d = 0, and α = 10

−5.

remains stable despite increasing numbers of errors. If process trip-

lication is not available, group triplication is slightly more e�cient

than duplication for small MTBEs, but the gain is marginal.

Furthermore, the impact of the sequential fraction α of the ap-

plication (in Amdahl’s Law) is twofold: (i) it limits the e�ciency

(e.g., < 30% of the maximum with α = 10
−5

for both duplication

and triplication); and (ii) it is a major factor in limiting the optimal

number of processes (e.g., one �fth of the platform for duplication

with α = 10
−5

and Q = 10
6

at MTBE = 10
2
).

8 CONCLUSION
Silent errors represent a major threat to the HPC community. In

the absence of application-speci�c detectors, replication is the only

solution. Unfortunately, it comes with a high cost: by de�nition, the

e�ciency is upper-bounded by 0.5 for duplication, and by 0.33 for

triplication. Are these upper bounds likely to be achieved? If yes, it

means that duplication should always be preferred to triplication.

If not, it means that in some scenarios, the striking of errors is so

frequent that duplication is not the right choice.

The major contribution of this paper is to provide an in-depth

analysis of process and group duplication, and of process and group

triplication. Given the replication scenario, and a set of applica-

tion/platform parameters (speedup pro�le, total number or proces-

sors, process MTBE, checkpoint cost, etc.), we derive closed-form

formulas for the optimal checkpointing interval, the optimal re-

source usage, and the overall speedup/e�ciency of the approach.

The results allow us to identify the right replication level to cope

with silent errors.

A set of simulations demonstrate the accuracy of the model and

analysis. Our simulator is made publicly available, so that inter-

ested readers can instantiate their preferred scenario. Altogether,

this paper has laid the foundations for a better understanding of

replication and its impact on silent errors while using HPC at scale.

Future work will be devoted to combining replication and check-

pointing to mitigate both fail-stop failures and silent errors. Partial

replication is another topic to explore: if the application comes as

a work�ow whose tasks are atomic components, one could assign

di�erent replication levels (duplication, triplication or more) to the

di�erent tasks, depending upon their criticality in terms of longest

paths, number of successors, etc.

REFERENCES
[1] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.

2004. Basic Concepts and Taxonomy of Dependable and Secure Computing. IEEE
Trans. Dependable Sec. Comput. 1, 1 (2004), 11–33.

[2] Anne Benoit, Aurélien Cavelan, Franck Cappello, Padma Raghavan, Yves Robert,

and Hongyang Sun. 2017. Identifying the right replication level to detect and
correct silent errors at scale. Research report RR-9047. INRIA.

[3] George Bosilca, Rémi Delmas, Jack Dongarra, and Julien Langou. 2009. Algorithm-

based fault tolerance applied to high performance computing. J. Parallel Distrib.
Comput. 69, 4 (2009), 410–416.

[4] Ron Brightwell, Kurt Ferreira, and Rolf Riesen. 2010. Transparent Redundant

Computing with MPI. In EuroMPI. Springer.

[5] Franck Cappello, Emil M. Constantinescu, Paul D. Hovland, Tom Peterka, Carolyn

Phillips, Marc Snir, and Stefan M. Wil. 2015. Improving the trust in results of
numerical simulations and scienti�c data analytics. White paper MCS-TM-352.

ANL.

[6] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Marc

Snir. 2009. Toward Exascale Resilience. Int. J. High Performance Computing
Applications 23, 4 (2009), 374–388.

[7] Franck Cappello, Al Geist, William Gropp, Sanjay Kale, Bill Kramer, and Marc

Snir. 2014. Toward Exascale Resilience: 2014 update. Supercomputing frontiers
and innovations 1, 1 (2014).

[8] Henri Casanova, Marin Bougeret, Yves Robert, Frédéric Vivien, and Dounia

Zaidouni. 2014. Using group replication for resilience on exascale systems. Int.
Journal of High Performance Computing Applications 28, 2 (2014), 210–224.

[9] Henri Casanova, Yves Robert, Frédéric Vivien, and Dounia Zaidouni. 2015. On the

impact of process replication on executions of large-scale parallel applications

with coordinated checkpointing. Future Generation Comp. Syst. 51 (2015), 7–19.

[10] J. T. Daly. 2006. A higher order estimate of the optimum checkpoint interval for

restart dumps. Future Generation Comp. Syst. 22, 3 (2006), 303–312.

[11] Sheng Di, Mohamed Slim Bouguerra, Leonardo Bautista-Gomez, and Franck

Cappello. 2014. Optimization of multi-level checkpoint model for large scale

HPC applications. In IPDPS. IEEE.

[12] J. Dongarra and et al. 2011. The International Exascale Software Project Roadmap.

Int. J. High Perform. Comput. Appl. 25, 1 (2011), 3–60.

[13] James Elliott, Kishor Kharbas, David Fiala, Frank Mueller, Kurt Ferreira, and

Christian Engelmann. 2012. Combining partial redundancy and checkpointing

for HPC. In ICDCS. IEEE.

[14] E. Elnozahy and J. Plank. 2004. Checkpointing for Peta-Scale Systems: A Look

into the Future of Practical Rollback-Recovery. IEEE Transactions on Dependable
and Secure Computing 1, 2 (2004), 97––108.

[15] C. Engelmann, H. H. Ong, and S. L. Scorr. 2009. The case for modular redundancy

in large-scale highh performance computing systems. In PDCN. IASTED.

[16] Christian Engelmann and Böhm Swen. 2011. Redundant execution of HPC

applications with MR-MPI. In PDCN. IASTED.

[17] K. Ferreira, J. Stearley, J. H. III Laros, R. Old�eld, K. Pedretti, R. Brightwell, R.

Riesen, P. G. Bridges, and D. Arnold. 2011. Evaluating the Viability of Process

Replication Reliability for Exascale Systems. In SC’11. ACM.

[18] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira, and

Ron Brightwell. 2012. Detection and correction of silent data corruption for

large-scale high-performance computing. In SC. ACM.

[19] Cijo George and Sathish S. Vadhiyar. 2012. ADFT: An Adaptive Framework for

Fault Tolerance on Large Scale Systems using Application Malleability. Procedia
Computer Science 9 (2012), 166 – 175.

[20] Thomas Hérault and Yves Robert (Eds.). 2015. Fault-Tolerance Techniques for
High-Performance Computing. Springer Verlag.

[21] Kuang-Hua Huang and J. A. Abraham. 1984. Algorithm-Based Fault Tolerance

for Matrix Operations. IEEE Trans. Comput. 33, 6 (1984), 518–528.

[22] Troy Leblanc, Rakhi Anand, Edgar Gabriel, and Jaspal Subhlok. 2009. VolpexMPI:

An MPI Library for Execution of Parallel Applications on Volatile Nodes. In 16th
European PVM/MPI Users’ Group Meeting. Springer-Verlag, 124–133.

[23] R. E. Lyons and W. Vanderkulk. 1962. The use of triple-modular redundancy to

improve computer reliability. IBM J. Res. Dev. 6, 2 (1962), 200–209.

[24] Adam Moody, Greg Bronevetsky, Kathryn Mohror, and Bronis R. de Supinski.

2010. Design, Modeling, and Evaluation of a Scalable Multi-level Checkpointing

System. In SC. ACM.

[25] Xiang Ni, Esteban Meneses, Nikhil Jain, and Laxmikant V. Kalé. 2013. ACR:

Automatic Checkpoint/Restart for Soft and Hard Error Protection. In SC. ACM.

[26] T.J. O’Gorman. 1994. The e�ect of cosmic rays on the soft error rate of a DRAM

at ground level. IEEE Trans. Electron Devices 41, 4 (1994), 553–557.

[27] R. A. Old�eld, S. Arunagiri, P. J. Teller, S. Seelam, M. R. Varela, R. Riesen, and P. C.

Roth. 2007. Modeling the Impact of Checkpoints on Next-Generation Systems.

In 24th IEEE Conf. Mass Storage Systems and Technologies. IEEE.

[28] B. Schroeder and G. Gibson. 2007. Understanding failures in petascale computers.

Journal of Physics: Conference Series 78, 1 (2007).

[29] B. Schroeder and G. A. Gibson. 2007. Understanding Failures in Petascale Com-

puters. Journal of Physics: Conference Series 78, 1 (2007).

[30] Manu Shantharam, Sowmyalatha Srinivasmurthy, and Padma Raghavan. 2012.

Fault Tolerant Preconditioned Conjugate Gradient for Sparse Linear System

Solution. In ICS. ACM.

[31] M. Snir and et al. 2014. Addressing Failures in Exascale Computing. Int. J. High
Perform. Comput. Appl. 28, 2 (2014), 129–173.

[32] Jon Stearley, Kurt B. Ferreira, David J. Robinson, Jim Laros, Kevin T. Pedretti,

Dorian Arnold, Patrick G. Bridges, and Rolf Riesen. 2012. Does partial replication

pay o�?. In FTXS. IEEE.

[33] Omer Subasi, Javier Arias, Osman Unsal, Jesus Labarta, and Adrian Cristal.

2015. Programmer-directed Partial Redundancy for Resilient HPC. In Computing
Frontiers. ACM.

[34] S. Yi, D. Kondo, B. Kim, G. Park, and Y. Cho. 2010. Using Replication and

Checkpointing for Reliable Task Management in Computational Grids. In SC.

ACM.

[35] John W. Young. 1974. A �rst order approximation to the optimum checkpoint

interval. Comm. of the ACM 17, 9 (1974), 530–531.

[36] J. Yu, D. Jian, Z. Wu, and H. Liu. 2011. Thread-level redundancy fault tolerant

CMP based on relaxed input replication. In ICCIT. IEEE.

[37] Z. Zheng and Z. Lan. 2009. Reliability-aware scalability models for high perfor-

mance computing. In Cluster Computing. IEEE.

[38] J. F. Ziegler, H. W. Curtis, H. P. Muhlfeld, C. J. Montrose, and B. Chin. 1996. IBM

Experiments in Soft Fails in Computer Electronics. IBM J. Res. Dev. 40, 1 (1996),

3–18.

	Abstract
	1 Introduction
	2 Related work
	3 Model
	4 Expected execution time
	5 Process replication
	5.1 Process duplication
	5.2 Process triplication and general replication

	6 Group replication
	6.1 Group duplication
	6.2 Group triplication and general replication

	7 Simulations
	7.1 Simulation setup
	7.2 Impacts of MTBE and checkpoint cost
	7.3 Impact of sequential fraction (Amdahl)
	7.4 Impact of number of processes
	7.5 Summary

	8 Conclusion
	References

