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Abstract: This paper provides a model and an analytical study of replication as a
technique to detect and correct silent errors. Although other detection techniques exist for
HPC applications, based on algorithms (ABFT), invariant preservation or data analytics,
replication remains the most transparent and least intrusive technique. We explore the
right level (duplication, triplication or more) of replication needed to e�ciently detect
and correct silent errors. Replication is combined with checkpointing and comes with two
�avors: process replication and group replication. Process replication applies to message-
passing applications with communicating processes. Each process is replicated, and the
platform is composed of process pairs, or triplets. Group replication applies to black-
box applications, whose parallel execution is replicated several times. The platform is
partitioned into two halves (or three thirds). In both scenarios, results are compared
before each checkpoint, which is taken only when both results (duplication) or two out of
three results (triplication) coincide. If not, one or more silent errors have been detected,
and the application rolls back to the last checkpoint. We provide a detailed analytical
study of both scenarios, with formulas to decide, for each scenario, the optimal parameters
as a function of the error rate, checkpoint cost, and platform size. We also report a set of
extensive simulation results that corroborates the analytical model.

Key-words: resilience, replication, silent errors, silent data corruptions, SDC, detection,
correction, duplication, triplication, voting, optimal, number of processors.



Quel est le bon niveau de réplication

pour détecter et corriger les erreurs silencieuses?

Résumé : Ce rapport propose un modèle et une étude analytique de la réplication en
tant que technique pour détecter et corriger les erreurs silencieuses. Bien que d'autres tech-
niques existent pour les applications HPC, basées sur des algorithmes (ABFT), préservation
d'invariant, ou analyse de données, la réplication reste la technique la plus transparente et la
moins intrusive. Nous explorons le bon niveau (duplication, triplication ou plus) de réplication
nécessaire pour détecter et corriger les erreurs silencieuses de manière e�cace. La réplication
est combinée avec des checkpoints et se présente sous deux formes : réplication de processus
et réplication de groupes. La réplication de processus s'applique aux applications à passage
de messages avec des processus communicants. Chaque processus est répliqué, et la plate-
forme est composée de paires, ou triplets de processus. La réplication de groupe s'applique
à des applications type boîte noire, dont l'exécution parallèle est répliquée plusieurs fois. La
plate-forme est alors partitionnée en deux moitiés (ou trois tiers). Dans les deux scénarios, les
résultats sont comparés avant chaque checkpoint, qui est e�ectué seulement lorsque les deux
résultats (duplication) ou deux sur trois (triplication) coïncident. Sinon, une ou plusieurs
erreurs silencieuses ont été détectées, et l'application redémarre depuis le dernier checkpoint.
Nous proposons une étude analytique détaillée des deux scénarios ainsi que les paramètres
optimaux fonction du taux d'erreur, du coût du checkpoint, et de la taille de la plate-forme.
Nous donnons également les résultats d'un ensemble de simulations qui viennent corroborer
le modèle analytique.

Mots-clés : résilience, réplication, erreurs silencieuses, duplication, triplication, détection,
correction, nombre de processeurs, optimal.
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1 Introduction

Triple Modular Redundancy, or TMR [33], is the standard fault-tolerance approach for critical
systems, such as embedded or aeronautical devices [1]. With TMR, computations are executed
three times, and a majority voting is conducted to select the correct result out of the three
available ones. Indeed, if two or more results agree, they are declared correct, because the
probability of two or more errors leading to the same wrong result is assumed so low that it
can be ignored. While triplication seems very expensive in terms or resources, anybody sitting
in a plane would heartily agree that it is worth the price.

On the contrary, duplication, let alone triplication, has a bad reputation in the High
Performance Computing (HPC) community. Who would be ready to waste half or two-thirds
of precious computing resources? However, despite its high cost, several authors have been
advocating the use of duplication in HPC in the recent years [40, 48, 24, 26]. In a nutshell, this
is because platform sizes have become so large that fail-stop errors are likely to strike at a high
rate during application execution. More precisely, the MTBF (Mean Time Between Failures)
µP of the platform decreases linearly with the number of processors P , since µP = µind

P ,
where µind is the MTBF of each individual component (see Proposition 1.2 in [30]). Take
µind = 10 years as an example. If P = 105 then µP ≈ 50 minutes and if P = 106 then µP ≈ 5
minutes: from the point of view of fault-tolerance, scale is the enemy. Given any value of
µind, there is a threshold value for the number of processors above which platform throughput
will decrease [23, 37, 41, 26]: the platform MTBF becomes so small that the applications
experience too many failures, hence too many recoveries and re-execution delays, to progress
e�ciently. All this explains why duplication has been considered for HPC applications despite
its cost. The authors in [26] propose process replication by which each process in a parallel
MPI (Message Passing Interface) application is duplicated on multiple physical processors
while maintaining synchronous execution of the replicas. This approach is e�ective because
the MTBF of a set of two replicas (which is the average delay for failures to strike both
processors in the replica set) is much larger than the MTBF of a single processor.

Process replication may not always be a feasible option. Process replication features must
be provided by the application. Some prototype MPI implementations [26, 27] are convincing
proofs of concept and do provide such capabilities. However, many other programming frame-
works (not only MPI-like frameworks, but also concurrent objects, distributed components,
work�ows, algorithmic skeletons) do not provide an equivalent to transparent process replica-
tion for the purpose of fault-tolerance, and enhancing them with transparent replication may
be non-trivial. When transparent replication is not (yet) provided by the runtime system, one
solution could be to implement it explicitly within the application, but this is a labor-intensive
process especially for legacy applications. Another approach introduced in [14] is group repli-
cation, a technique that can be used whenever process replication is not available. Group
replication is agnostic to the parallel programming model, and thus views the application as
an unmodi�ed black box. The only requirement is that the application be startable from a
saved checkpoint �le. Group replication consists in executing multiple application instances
concurrently. For example, 2 distinct P -process application instances could be executed on a
2P -processor platform. At �rst glance, it may seem paradoxical that better performance can
be achieved by using group duplication. After all, in the above example, 50% of the platform
is �wasted� to perform redundant computation. The key point here is that each application
instance runs at a smaller scale. As a result each instance can use lower checkpointing fre-
quency, and can thus have better parallel e�ciency in the presence of faults, when compared
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to a single application instance running at full scale. In some cases, the application makespan
can then be comparable to, or even shorter than that obtained when running a single applica-
tion instance. In the end, the cost of wasting processor power for redundant computation can
be o�set by the bene�t of reduced checkpointing frequency. Furthermore, in group replication,
once an instance saves a checkpoint, the other instance can use this checkpoint immediately
to �jump ahead� in its execution. Hence, group replication is more e�cient than the mere
independent execution of several instances: each time one instance successfully completes a
given �chunk of work�, all the other instances immediately bene�t from this success. To im-
plement group replication the runtime system needs to perform the typical operations needed
for system-assisted checkpoint/restart: determining checkpointing frequencies for each appli-
cation instance, causing checkpoints to be saved, detecting application failures, and restarting
an application instance from a saved checkpoint after a failure. The only additional feature
is that the system must be able to stop an instance and cause it to resume execution from a
checkpoint �le produced by another instance as soon as it is produced.

Process or group replication has been mainly proposed in HPC to cope with fail-stop errors.
However, another challenge is represented by silent errors, or silent data corruption, whose
threat can no longer be ignored [36, 49, 34]. There are several causes of silent errors, such as
cosmic radiation, packaging pollution, among others. Silent errors can strike the cache and
memory (bit �ips) as well as CPU operations; in the latter case they resemble �oating-point
errors due to improper rounding, but have a dramatically larger impact because any bit of
the result, not only low-order mantissa bits, can be corrupted. In contrast to a fail-stop error
whose detection is immediate, a silent error is identi�ed only when the corrupted data leads
to an unusual application behavior. Such detection latency raises a new challenge: if the error
struck before the last checkpoint, and is detected after that checkpoint, then the checkpoint
is corrupted and cannot be used for rollback. To distinguish from fail-stop failures, we use
MTBE instead of MTBF to characterize the rate of silent errors.

To address the problem of silent errors, many application-speci�c detectors, or veri�ca-
tion mechanisms, have been proposed (see Section 2 for a survey). It is not clear, however,
whether a special-purpose detector can be designed for each scienti�c application. In addition,
application-speci�c veri�cation mechanisms only protect from some types of error sources, and
fail to provide accurate and e�cient detection of all silent errors. In fact, providing such de-
tectors for scienti�c applications has been identi�ed as one of the hardest challenges1 towards
extreme-scale computing [12, 13].

Altogether, silent errors call for revisiting replication in the framework of scienti�c ap-
plication executing on large-scale HPC platforms. Because replication is now applied at the
process level, scale becomes an even harder-to-�ght enemy. Processor count ranges to about
105 on the K-computer and TaihuLight systems. The number of processors could increase
further to 106 (hence 106 or more processes) on Exascale systems, with billions of threads [20].
In addition, the probability of several errors striking during an execution can get signi�cant,
depending upon whether or not circuit manufacturers increase signi�cantly the protection of
the logic, latch/�ip-�ops and static arrays in the processor. In a recent paper [43], the authors
consider that with signi�cant more protection (more hardware, more power consumption),
the FIT2 rate for undetected errors on a processor circuit could be maintained to around 20.

1More generally, trustworthy computing, which aims at guaranteeing the correctness of the results of a
long-lasting computation on a large-scale supercomputer, has received considerable attention recently [11].

2The Failures in Time (FIT) rate of a device is the number of failures that can be expected in one billion
(109) device-hours of operation.
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But without additional protection compared to the current situation, the FIT rate for unde-
tected errors could be as high as 5,000 (or 1 error every 200,000 hours). Combining 10 million
of devices with this FIT rate would result in a silent error in the system every 72 seconds.
This work aims at providing a quantitative assessment of the potential of duplication and
triplication to mitigate such a threat. Speci�cally, the main contributions of this work are:

� an analytical model to study the performance of all replication scenarios against silent
errors, namely, duplication, triplication, or more for process and group replications;

� closed-form formulas that give the optimal checkpointing period and optimal process
number as a function of the error rate, checkpoint cost, and platform size;

� a set of simulation results that corroborate the analytical model.

The rest of the paper is organized as follows. Section 2 surveys the related work. We
introduce the performance model in Section 3, and derive the general expected execution time
in Section 4. The analysis for process replication is presented in Section 5, followed by the
analysis for group replication in Section 6. Section 7 is devoted to the simulation results.
Finally, we provide concluding remarks and directions for future work in Section 8.

2 Related work

We survey related work in this section. We start with replication for HPC applications in
Section 2.1 and cover application-speci�c detectors in Section 2.2.

2.1 Replication for fail-stop errors

Checkpointing policies have been widely studied. We refer to [30] for a survey of various
protocols and the derivation of the Young's and Daly's formula [46, 18] for the optimal
checkpointing periods. Recent advances include multi-level approaches, or the use of SSD
or NVRAM as secondary storage [13]. Combining replication with checkpointing has been
proposed in [41, 48, 24] for HPC platforms, and in [32, 45] for grid computing.

The use of redundant MPI processes is analyzed in [25, 26, 15]. In particular, the work
by Ferreira et al. [26] has studied the use of process replication for MPI applications, us-
ing 2 replicas per MPI process. They provide a theoretical analysis of parallel e�ciency, an
MPI implementation that supports transparent process replication (including failure detection,
consistent message ordering among replicas, etc.), and a set of experimental and simulation
results. Partial redundancy is studied in [22, 44] (in combination with coordinated checkpoint-
ing) to decrease the overhead of full replication. Adaptive redundancy is introduced in [28],
where a subset of processes is dynamically selected for replication.

Thread-level replication has been investigated in [47, 17, 38]. This paper targets process-
level replication, in order to be able to detect (and correct) silent errors striking in all
communication-related operations.

Finally, Ni et al [35] introduce process duplication to cope with both fail-stop and silent
errors. Their pioneering paper contains many interesting results but di�ers from this work
as follows: (i) they limit themselves to perfectly parallel applications while we investigate
speedup pro�les that obey Amdahl's law; (ii) they do not investigate triplication; and (iii)
they compute an upper bound on the optimal period and do not determine optimal processor
counts.

RR n° 9047
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2.2 Silent error detection and correction

Application-speci�c information enables ad-hoc solutions, which dramatically decrease the
cost of error detection. Algorithm-based fault tolerance (ABFT) [31, 9, 42] is a well-known
technique, which uses checksums to detect up to a certain number of errors in linear algebra
kernels. Unfortunately, ABFT can only protect datasets in linear algebra kernels, and it must
be implemented for each di�erent kernel, which incurs a large amount of work for large HPC
applications. Other techniques have also been advocated. Benson, Schmit and Schreiber [7]
compare the result of a higher-order scheme with that of a lower-order one to detect errors
in the numerical analysis of ODEs and PDEs. Sao and Vuduc [39] investigate self-stabilizing
corrections after error detection in the conjugate gradient method. Bridges et al. [29] propose
linear solvers to tolerant soft faults using selective reliability. Elliot et al. [21] design a fault-
tolerant GMRES capable of converging despite silent errors. Bronevetsky and de Supinski [10]
provide a comparative study of detection costs for iterative methods.

Recently, several silent error detectors based on data analytics have been proposed, showing
promising results. These detectors use several interpolation techniques such as time series
prediction [8] and spatial multivariate interpolation [3, 4, 5]. Such techniques o�er large
detection coverage for a negligible overhead. However, these detectors do not guarantee full
coverage; they can detect only a certain percentage of corruptions (i.e., partial veri�cation with
an imperfect recall). Nonetheless, the accuracy-to-cost ratios of these detectors are high, which
makes them interesting alternatives at large scale. Similar detectors have also been designed
to detect silent errors in the temperature data of the Orbital Thermal Imaging Spectrometer
(OTIS) [16].

Again, all the papers quoted in this section provide application-speci�c detectors, while
our approach is agnostic of the application characteristics. The only information is whether
we can use either process replication. If not, we see the application as a black box and can
use only group replication.

3 Model

This section presents the analytical model for evaluating the performance of di�erent repli-
cation scenarios. The model is classical, similar to those of the literature for replication [26],
only with a di�erent objective (quantifying replication for silent errors). Table 1 summarizes
the main notations.

Recall that µind denotes the MTBE of an individual processor or process3 of the system,
and let λ = 1

µind
denote the silent error rate of the processor. The error rate for a collection

of P processors is then given by λP = 1
µP

= P
µind

= λP [30]. Assuming that the error arrivals
follow Exponential distribution, the probability that a computation hit by a silent error during
time T on P processes is given by P(T, P ) = 1− e−λPT .

Consider long-latsting HPC applications that execute for hours or even days on a large-scale
platform. Resilience is enforced by the combined use of replication and periodic checkpoint-
ing. Before each checkpoint, the results of di�erent replicas are compared. Only when both

3We assume that each process is executed by a dedicated processor, hence use �processor� and �process�
interchangeably. We also use MTBE instead of MTBF to emphasize that we deal with (silent) errors, not
failures.

RR n° 9047



Identifying the right replication level to detect and correct silent errors at scale 8

Table 1: List of Notations.
Parameters

T Length (or period) of a pattern

P Number of processes allocated to an application

n Number of (process or group) replicas

S(P ) Speedup function of an application

H(P ) = 1
S(P ) Error-free execution overhead

En(T, P ) Expected execution time of a pattern

Hn(T, P ) Expected execution overhead of a pattern

Sn(T, P ) Expected speedup function of a pattern

λ = 1
µind

Silent error rate of an individual process

Pn(T, P ) Silent error probability of a pattern

C Checkpointing cost

R Recovery cost

V Veri�cation cost (comparison of replicas)

results (for duplication) or two out of three results (for triplication) coincide4, in which case a
consensus is said to be reached, the checkpoint is taken. Otherwise, silent errors are assumed
to have been detected, and they cannot be corrected through consensus. The application then
rolls back to the last checkpoint. There are two di�erent types of replications:

� Process replication: Each process of the application is replicated, and the results of
di�erent processes are independently compared. A rollback is needed when at least one
process has failed to reach a consensus;

� Group replication: The entire application (as a black box) is replicated, and the results
of all replicas (as a whole) are compared. A rollback is needed when these group replicas
fail to reach a consensus.

The computational chunk between two checkpoints is called a periodic pattern. For a
replication scenario with n replicas, the objective is to minimize the expected total execution
time (or makespan) of an application by �nding the optimal pattern parameters:

� T : length (or period) of the pattern;

� P : number of processes allocated to the application.

Indeed, for long-lasting applications, it su�ces to focus on just one pattern, since the pat-
tern repeats itself over time. To see this, let Wtotal denote the total amount of work of the
application and suppose the application has a speedup function S(P ) when executed on P
processors. In this paper, we focus on a speedup function that obeys Amdahl's law5:

S(P ) =
1

α+ 1−α
P

, (1)

where α ∈ [0, 1] denotes the sequential fraction of the application that cannot be parallelized.
For convenience, we also de�ne H(P ) = 1

S(P ) to be the execution overhead. For a pattern

4For n > 3 replicas, the results of k replicas should coincide, where 2 ≤ k < n is a design parameter set by
the system to control the level of reliability. k = bn

2
c+ 1 is a widely-used choice (majority voting).

5The model is generally applicable to other speedup functions as well.
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of length T and run by P processes, the amount of work done in a pattern is therefore
Wpattern = T ·S(P ), and the total number of patterns in the application can be approximated as
m = Wtotal

Wpattern
= Wtotal

T ·S(P ) = Wtotal

T H(P ). Now, let En(T, P ) denote the expected execution time of

the pattern with n replicas in either replication scenario. De�neHn(T, P ) = En(T,P )
T H(P ) to be

the expected execution overhead of the pattern, and Sn(T, P ) = 1
Hn(T,P ) the expected speedup.

The expected makespan of the application can then be written as Etotal ≈ En(T, P )m =
En(T, P )Wtotal

T H(P ) = Hn(T, P ) · Wtotal = Wtotal

Sn(T,P ) . This shows that the optimal expected
makespan can be achieved by minimizing the expected execution overhead of a pattern, or
equivalently, maximizing the expected speedup.

Now, we describe a model for the costs of checkpoint, recovery and consensus veri�cation.
First, the checkpoint cost clearly depends on the protocol and storage type. Note that only the
result of one replica needs to be checkpointed, so the cost does not increase with the number
of replicas. To save the application's memory footprint M to the storage system using P
processes, we envision the following two scenarios:

� C = M
τio

: In this case, checkpoints are being written to the remote storage system, whose
bandwidth is the I/O bottleneck. Here, τio is the remote I/O bandwidth.

� C = M
τnetP

: This case corresponds to in-memory checkpoints, where each process stores
M
P data locally (e.g., on SSDs). Here, τnet is the process network bandwidth.

The recovery cost is assumed to be the same as the checkpointing cost, i.e., R = C, as it
involves the same I/O operations. This is a common assumption [34], although practical re-
covery cost can be somewhat smaller than the checkpoint cost [19]. Finally, verifying consensus
is performed by communicating and comparing M

P data stored on each process, which can be
executed concurrently by all process pairs (or triplets). Hence, the veri�cation cost satis�es
V = O(MP ). Overall, we use the following general expression to account for the combined cost
of veri�cation and checkpoint/recovery:

V + C = c+
d

P
, (2)

where c and d are constants that depend on the application memory footprint, checkpointing
protocol, network or I/O bandwidth, etc. Equation (2) is convenient in terms of analysis as
we will see in the subsequent sections. Here, c = 0 corresponds to the second checkpointing
scenario discussed above.

4 Expected execution time

In this section, we compute the expected execution time of a periodic pattern, which will be
used in the next two sections to derive the optimal pattern parameters.

Theorem 1. The expected time to execute a periodic pattern of length T using P processes
and n replicas can be expressed as

En(T, P ) = T + V + C +
Pn(T, P )

1− Pn(T, P )
(T + V +R) , (3)

where Pn(T, P ) denotes the probability that the execution fails due to silent errors striking
during the pattern and we have to roll back to the last checkpoint.

RR n° 9047
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Proof. Since replicas are synchronized, we can generally express the expected execution time
as follows:

En(T, P ) = T + V + Pn(T, P )
(
R+ En(T, P )

)
+
(
1− Pn(T, P )

)
C . (4)

First, the pattern of length T is executed followed by the veri�cation (through comparison
and/or voting), which incurs cost V . With probability Pn(T, P ), the pattern fails due to silent
errors. In this case, we need to re-execute the pattern after performing a recovery from the
last checkpoint with cost R. Otherwise, with probability 1−Pn(T, P ), the execution succeeds
and the checkpoint with cost C is taken at the end of the pattern. Now, solving for En(T, P )
from Equation (4), we can obtain the expected execution time of the pattern as shown in
Equation (3).

Remarks. Theorem 1 is applicable to both process replication and group replications. The
only di�erence lies in the computation of failure probability Pn(T, P ), which depends not only
on the replication scenario but also on the number of replicas n.

5 Process replication

In this section, we consider process replication. We �rst derive the optimal computing pat-
terns when each process of the application is duplicated (Section 5.1) and triplicated (Section
5.2), respectively. Finally, we generalize the results to an arbitrary but constant number of
replications per process under a general process replication framework (Section 5.3).

5.1 Process duplication

We start with process duplication, that is, each process has two replicas. The following lemma
shows the failure probability of a given computing pattern in this case.

Lemma 1. Using process duplication, the failure probability of a computing pattern of length
T and with P processes is given by

Pprc
2 (T, P ) = 1− e−2λTP . (5)

Proof. With duplication, errors cannot be corrected (no consensus), hence a process fails if
either one of its replicas fails or both replicas fail. In other words, there is an error if the results
of both replicas do not coincide (we neglect the quite unlikely scenario with one error in each
replica leading to the same wrong result). Let Pprc

1 (T, 1) = 1 − e−λT denote the probability
of a single process failure. Therefore, we can write the failure probability of any duplicated
process as follows:

Pprc
2 (T, 1) =

(
2

1

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1) + Pprc

1 (T, 1)2

= 2e−λT
(

1− e−λT
)

+
(

1− e−λT
)2

= 1− e−2λT .
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Now, because we have P independent processes, the probability that the application gets
interrupted by silent errors is the probability that at least one process fails because of silent
errors, which can be expressed as:

Pprc
2 (T, P ) = 1− P(�No process fails�)

= 1− (1− Pprc
2 (T, 1))

P

= 1− e−2λPT .

Using the failure probability in Lemma 1, we derive the optimal computing pattern for
process duplication as shown in the following theorem. Recall that the application speedup
follows Amdahl's law as shown in Equation (1) and the cost of veri�cation and checkpoint is
modeled by Equation (2).

Theorem 2. A �rst-order approximation to the optimal number of processes for an application
with 2 replicas per process is given by

Popt = min

Q2 ,
(

1

2

(
1− α
α

)2 1

cλ

) 1
3

 , (6)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

2λPopt

) 1
2

, (7)

Sprc2 (Popt) =
S(Popt)

1 + 2
(
2λ(V + C)Popt

) 1
2

. (8)

Proof. First, we can derive, from Theorem 1 and Lemma 1, the expected execution time of a
pattern with length T and P duplicated processes as follows:

Eprc
2 (T, P ) = T + V + C +

(
e2λPT − 1

)
(T + V +R)

= T + V + C + 2λPT (T + V +R) + o(λPT 2) .

The second equation above is obtained by applying Taylor series to approximate ez = 1 + z+
o(z) for z < 1, while assuming λPT = Θ(λε), where ε > 0.

Now, we have a closed-form expression for Eprc
2 (T, P ). Substituting it into Hprc

2 (T, P ) =

H(P )
Eprc
2 (T,P )
T , we can get the expected execution overhead as:

Hprc
2 (T, P ) = H(P )

(
1 +

V + C

T
+ 2λPT + o(λPT )

)
. (9)

The optimal overhead can then be achieved by balancing (or equating) the two terms V+C
T

and 2λPT above, which gives the following optimal checkpointing period as a function of the
process count:

Topt(P ) =

(
V + C

2λP

) 1
2

. (10)
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Now, substituting Topt(P ) back into Equation (9), we get the execution overhead as a function
of the process count as follows (lower-order terms ignored):

Hprc
2 (P ) = H(P )

(
1 + 2

(
2λ(V + C)P

) 1
2

)
. (11)

Note that Equations (10) and (11) hold true regardless of the form of the function H(P ) or
the cost V + C. Recall that we consider Amhdal's law H(P ) = α + 1−α

P and a cost model

V + C = c+ d
P . In order to derive the optimal process count, we consider two cases:

Case (1). c > 0 and α > 0 are both constants: we can expand Equation (11) to be

Hprc
2 (P ) = α+ 2α

(
2λcP

) 1
2 +

1− α
P

+ o(λ
1
2 ) . (12)

The optimal overhead can then be achieved by setting

∂Hprc
2 (P )

∂P
= α

(
2λc

P

) 1
2

− 1− α
P 2

= 0 ,

which leads to P ∗ =
(
1
2

(
1−α
α

)2 1
cλ

) 1
3
. Since the total number of processes in the system is Q

and each application process is duplicated, the optimal process count is upper-bounded by Q
2

if P ∗ > Q
2 , due to the convexity of Hprc

2 (P ) as shown in Equation (11). Hence, the optimal
process count Popt is given by Equation (6).

Case (2). c = 0 or α = 0: In either case, we can see that Equation (11) becomes a
decreasing function of P . Therefore, the optimal strategy is to utilize all the available Q

processes, i.e., Popt = Q
2 , which again satis�es Equation (6), since

(
1
2

(
1−α
α

)2 1
cλ

) 1
3

=∞.

In either case, the expected application speedup is then given by the reciprocal of the
overhead as shown in Equation (11) with the optimal process count Popt.

Remarks. For fully parallelizable applications, i.e., α = 0, the optimal pattern on a Q-
process platform is characterized by

Popt =
Q

2
, Topt =


√

c
λQ for V + C = c

1
Q

√
2d
λ for V + C = d

P

,

Sprc2 (Popt) =


Q

2(1+2
√
λcQ)

for V + C = c
Q

2(1+2
√
2λd)

for V + C = d
P

.

5.2 Process triplication

Now, we consider process duplication, that is, each process has three replicas. This is the
smallest number of replicas that allows an application to recover from silent errors through
majority voting instead of rolling back to the last checkpoint.

Lemma 2. Using process triplication, the failure probability of a computing pattern of length
T and with P processes is given by

Pprc
3 (T, P ) = 1−

(
3e−2λT − 2e−3λT

)P
. (13)
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Proof. Using triplication, if only one replica fails, the silent error can be masked by the two
successful replicas. Hence, in this case, a process fails if at least two of its replicas are hit
by silent errors. Let Pprc

1 (T, 1) = 1 − e−λT denote the probability of a single process failure.
Therefore, we can write the failure probability of any triplicated process as follows:

Pprc
3 (T, 1) =

(
3

2

)
(1− Pprc

1 (T, 1))Pprc
1 (T, 1)2 + Pprc

1 (T, 1)3

= 3e−λT
(

1− e−λT
)2

+
(

1− e−λT
)3

= 1− 3e−2λT + 2e−3λT .

For P independent processes, the application fails when at least one of its processes fails.
Hence, we have:

Pprc
3 (T, P ) = 1− P(�No process fails�)

= 1− (1− Pprc
3 (T, 1))

P

= 1−
(

3e−2λT − 2e−3λT
)P

.

The following theorem derives the optimal computing pattern for process triplication.

Theorem 3. A �rst-order approximation to the optimal number of processes for an application
with 3 replicas per process is given by

Popt = min

Q3 ,
(

4

3

(
1− α
α

)3( 1

cλ

)2
) 1

4

 , (14)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

6λ2Popt

) 1
3

, (15)

Sprc3 (Popt) =
S(Popt)

1 + 3
(
3
4 (λ(V + C))2 Popt

) 1
3

. (16)

Proof. From Theorem 1 and Lemma 2, and applying Taylor series, we can derive the expected
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execution time of a pattern as follows:

Eprc
3 (T, P ) = T + V + C +

1−
(
3e−2λT + 2e−3λT

)P
(3e−2λT − 2e−3λT )

P

(
T + V +R

)
= T + V + C +

((
e3λT

3eλT − 2

)P
− 1

)(
T + V +R

)
≈ T + V + C +

(1 + 3λT + (3λT )2

2

1 + 3λT + 3(λT )2

2

)P
− 1

 (T + V +R)

≈ T + V + C +
((

1 + 3(λT )2
)P − 1

)
(T + V +R)

= T + V + C +

 P∑
j=0

(
P

j

)(
3(λT )2

)j − 1

 (T + V +R)

= T + V + C + 3P (λT )2(T + V +R) + o(λ2PT 3) .

The execution overhead can then be expressed as:

Hprc
3 (T, P ) = H(P )

(
1 +

V + C

T
+ 3P (λT )2 + o(λ2PT 2)

)
. (17)

The optimal checkpointing period is then obtained by setting

∂Hprc
3 (T, P )

∂T
= −V + C

T 2
+ 6λ2PT = 0 ,

which gives

Topt(P ) =

(
V + C

6λ2P

) 1
3

.

Substituting Topt(P ) back into Equation (17), we get the following execution overhead (with
lower-order terms ignored):

Hprc
3 (P ) = H(P )

(
1 + 3

(
3

4
(λ(V + C))2 P

) 1
3

)
. (18)

To derive the optimal process count, consider V + C = c and H(P ) = α+ 1−α
P for α > 0.

Then, Equation (11) can be expanded as

Hprc
3 (P ) = α+ 3α

(
3

4
(λc)2 P

) 1
3

+
1− α
P

+ o(λ
2
3 ) . (19)

The optimal overhead is achieved by setting

∂Hprc
3 (P )

∂P
= α

(
3

4
(λc)2

1

P 2

) 1
3

− 1− α
P 2

= 0 ,

which gives rise to P ∗ =
(
4
3

(
1−α
α

)3 ( 1
cλ

)2) 1
4
. Now, the optimal process count is upper-bounded

by Q
3 . Thus, Popt is given by Equation (14), which again holds true when c = 0 or α = 0, and

the optimal expected speedup satis�es Sprc3 (Popt) = 1
Hprc

3 (Popt)
, as shown in Equation (16).
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Remarks. For fully parallelizable applications, i.e., α = 0, the optimal pattern on a Q-
process platform is characterized by

Popt =
Q

3
, Topt =

 3

√
c

2λ2Q
for V + C = c

3

√
3d

2λ2Q2 for V + C = d
P

,

Sprc2 (Popt) =


Q

3

(
1+3 3

√
(λc2 )

2
Q

) for V + C = c

Q

3

(
1+3 3

√
( 3λc

2 )
2 1
Q

) for V + C = d
P

.

Compared with duplication, the ability to correct errors in triplication allows checkpoints to be
taken less frequently (i.e., larger checkpointing period). In terms of the expected speedup, trip-
lication su�ers from a smaller error-free speedup (Q3 vs Q

2 ) due to the use of fewer concurrent
processes to perform useful work, but also has a smaller error-induced denominator, especially
on platforms with a large number of processes Q. In Section 7, we will conduct simulations
to evaluate this trade-o� and compare the performance of duplication and triplication.

5.3 General process replication

In this section, we consider a general resilience framework and derive the optimal pattern using
n replicas per process, where n is an arbitrary constant. Moreover, let k denote the number of
�good� replicas (not hit by silent errors) that is required to reach a consensus through voting.
Optimistically, assuming any two replicas that are hit by silent errors will produce di�erent
results, we can set k = 2, i.e., at least two replicas should agree on the result to avoid a
rollback. Under a more pessimistic assumption, we will need a majority of the n replicas to
agree on the result, so in this case we need k = bn2 c + 1. Our results are independent of the
choice of k.

As for duplication and triplication, for a given (n, k) pair, we can compute the failure
probability of a pattern with length T and P processes as follows:

Pprc
n,k(T, P ) = 1− P(�No process fails�)

= 1− (1− Pprc
n,k(T, 1))P , (20)

where

Pprc
n,k(T, 1) =

k−1∑
j=0

(
n

j

)
(1− Pprc

1 (T, 1))
j Pprc

1 (T, 1)n−j

=

k−1∑
j=0

(
n

j

)
e−λjT

(
1− e−λT

)n−j
(21)

denotes the failure probability of a single process with n replicas due to less than k of them
surviving silent errors.

The following theorem shows the general result for (n, k)-process replication.
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Theorem 4. On a system with a total number of Q available processors, a �rst-order approx-
imation to the optimal number of processes for an application with n replicas per process (k of
which must concur to avoid a rollback) is given by

Popt = min

Qn ,
(
γn,k

(
1− α
α

)n−k+2( 1

cλ

)n−k+1
) 1

n−k+3

 . (22)

The associated optimal checkpointing period and the expected speedup function of the applica-
tion are

Topt(Popt) =

(
V + C

βn,kλn−k+1Popt

) 1
n−k+2

, (23)

Sprcn,k(Popt) =
S(Popt)

1 + (n− k + 2)
(
((V+C)λ)n−k+1Popt

γn,k

) 1
n−k+2

. (24)

Here, βn,k =
(
n
k−1
)
(n− k + 1) and γn,k = (n−k+1)n−k+1

( n
k−1)

.

Proof. As in the preceding two cases, we start by approximating the error probability. First,
we can approximate the probability of single process failure as

Pprc
n,k(T, 1) =

k−1∑
j=0

(
n

j

)
(1− λT )j (λT )n−j

≈
(

n

k − 1

)
(λT )n−k+1 + o((λT )n−k+1) .

We can now approximate

Pprc
n,k(T, P )

1− Pprc
n,k(T, P )

≈
(

1

1− Pprc
n,k(T, 1)

)P
− 1

≈
(

1 +

(
n

k − 1

)
(λT )n−k+1

)P
− 1

=

P∑
j=0

(
P

j

)((
n

k − 1

)
(λT )n−k+1

)j
− 1

=

(
n

k − 1

)
P (λT )n−k+1 + o(P (λT )n−k+1) .

Thus, the expected execution time of a pattern can be expressed as

Egrp
n (T, P )k = T + V + C +

(
n

k − 1

)
P (λT )n−k+1(T + V +R)

+ o(λn−k+1PTn−k+2) .

The derivation of the optimal pattern then follows exactly the same steps as in the proofs of
Theorems 2 and 3, and the detailed derivation steps are omitted here.
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Remarks. Theorem 4 encompasses Theorem 2 and Theorem 3 as special cases. We point
out that it even holds for the case without replication, i.e., when n = k = 1. In this case,
Theorem 4 evaluates to

Topt(P ) =

√
V + C

λP
,

Sprc1 (P ) =
S(P )

1 + 2
√

(V + C)λP
,

which is consistent with the results obtained in [6, 2], provided that a reliable silent error
detector is available. However, as mentioned previously, such a detector is only known in
some application-speci�c domains. For general-purpose computations, replication appears to
be the only viable approach to detect/correct silent errors so far.

6 Group replication

In this section, we consider group replication. Recall that, unlike process replication where the
results of each process from di�erent replicas are independently compared, group replication
compares the outputs of the di�erent groups viewed as independent black-box applications.
First, we make the following technical observation, which establishes the relationship between
the two replication mechanisms from the resilience point of view.

Observation 1. Running an application using group replication with n replicas, where each
replica has P processes and each process has error rate λ, has the same failure probability as
running it using process replication with one process, which has error rate λP and is replicated
n times.

The above observation allows us to compute the failure probability for group replication
by deriving from the corresponding formulas under process replication while setting P = 1
and λ = λP . The rest of this section shows the results for duplication, triplication, and a
general group replication framework. Proofs are similar to those in process replication, and
are hence omitted.

6.1 Group duplication

By applying Observation 1 on Lemma 1, we can get the failure probability for a given pattern
under group duplication as follows.

Lemma 3. Using group duplication, the failure probability of a computing pattern of length T
and with P processes is given by

Pgrp
2 (T, P ) = 1− e−2λTP . (25)

This leads us to the following theorem on the optimal pattern:

Theorem 5. A �rst-order approximation to the optimal number of processes for an application
with 2 replica groups is given by

Popt = min

Q2 ,
(

1

2

(
1− α
α

)2 1

cλ

) 1
3

 , (26)
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where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected speedup function of the application are

Topt(Popt) =

(
V + C

2λPopt

) 1
2

, (27)

Sgrp2 (Popt) =
S(Popt)

1 + 2
(
2λ(V + C)Popt

) 1
2

. (28)

Remarks. The result is identical to that of process duplication. Indeed, in both cases, a
single silent error that strikes any of the running processes will cause the whole application to
fail.

6.2 Group triplication

Again, applying Observation 1 on Lemma 2, we can get the failure probability for a given
pattern under group triplication.

Lemma 4. Using group triplication, the failure probability of a computing pattern of length T
and with P processes is given by

Pgrp
3 (T, P ) = 1−

(
3e−2λTP − 2e−3λTP

)
. (29)

The following theorem shows the optimal pattern.

Theorem 6. A �rst-order approximation to the optimal number of processes for an application
with 3 replica groups is given by

Popt = min

Q3 ,
(

1

6

(
1− α
α

)3( 1

cλ

)2
) 1

5

 , (30)

where Q denotes the total number of available processes in the system. The associated optimal
checkpointing period and the expected execution overhead are

Topt(Popt) =

(
V + C

6(λPopt)2

) 1
3

, (31)

Sgrp3 (Popt) =
S(Popt)

1 + 3
(
3
4

(
λ(V + C)Popt

)2) 1
3

. (32)

Remarks. Compared to the result of process triplication (Theorem 3) and under the same
condition (e.g., α = 0 so both scenarios allocate the same number of Popt = Q

3 processes to each
replica), group triplication needs to place checkpoints more frequently yet enjoys a smaller
execution speedup. This provides a theoretical explanation to the common understanding
that group replication in general cannot recover from some error combinations that its process
counterpart is capable of, making the latter a superior replication mechanism provided that
it can be feasibly implemented.
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6.3 General group replication

Finally, we consider a general group replication framework and derive the optimal pattern
using a constant number of n replica groups, out of which k of them must agree to avoid a
rollback. Again, the results work for any choice of k.

Now, applying Observation 1 on Equations (20) and (21), we can compute the failure
probability of a pattern with length T and P processes under a (n, k) group replication model:

Pgrp
n,k(T, P ) =

k−1∑
j=0

(
n

j

)(
e−λPT

)j (
1− e−λPT

)n−j
. (33)

The following theorem shows the general result for this case.

Theorem 7. On a system with a total number of Q available processors, a �rst-order approxi-
mation to the optimal number of processes for an application with n replica groups (k of which
must concur to avoid a rollback) is given by

Popt = min

Qn ,
(

1

βn,k

(
1− α
α

)n−k+2( 1

cλ

)n−k+1
) 1

2n−2k+3

 . (34)

The associated optimal checkpointing period and the expected speedup function of the applica-
tion are

Topt(Popt) =

(
C + V

βn,k(λPopt)n−k+1

) 1
n−k+2

, (35)

Sgrpn,k(Popt) =
S(Popt)

1 + (n− k + 2)
(

1
γn,k

(
(V + C)λPopt

)n−k+1
) 1
n−k+2

. (36)

Here, βn,k =
(
n
k−1
)
(n− k + 1) and γn,k = (n−k+1)n−k+1

( n
k−1)

.

7 Simulations

We conduct a set of simulations whose goal is twofold: (i) validate the accuracy of the theoret-
ical study; and (ii) evaluate the e�ciency of both process and group replication under di�erent
scenarios at extreme scale. The simulator is publicly available at http://perso.ens-lyon.
fr/aurelien.cavelan/replication.zip so that interested readers can instantiate their pre-
ferred scenarios and repeat the same simulations for reproducibility purpose.

7.1 Simulation setup

The simulator has been designed to simulate each process individually, and each process has
its own error trace. A simulation works as follows: we feed the simulator with the model
parameters µind, Q, C, V , R, and α, and we compute the associated optimal number of
processes Popt and the optimal checkpointing period Topt(Popt) using the corresponding model

equations. For each run, the simulator outputs the e�ciency, de�ned as
S(Popt)
Q , as well as the

average number of errors and the average number of recoveries per million CPU hours of work.
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Then, for each of the following scenarios, we compare the simulated e�ciency to the theoretical
value, obtained using the model equations for S(Popt). As suggested by Observation 1, process
and group replications with n = 2 lead to identical results, so we have merged them together.

In the following, we set the cost of recovery to be the same as the checkpoint cost (as
discussed in Section 3), and we set the cost V + C according the values of c and d as in
Equation (2). We consider di�erent Mean Time Between Errors (MTBE), ranging from 106

seconds (≈ 11 days) down to 102 seconds (< 2 minutes) for Q = 106 processes, matching the
numbers in [43].

7.2 Impacts of MTBE and checkpoint cost

Figure 1 presents the impact of the MTBE on the e�ciency of both duplication and triplica-
tion for three di�erent checkpoint costs, but using the same value α = 10−6 for the sequential
fraction of the application (see next section for the impact of varying α). The �rst row of
plots is obtained with a cost of 30 minutes (i.e. c = 1, 800, d = 0), the second row with a cost
of 60 seconds (i.e. c = 60, d = 0), and the last row with c = 0, d = 107, which correspond to
a checkpoint cost of 20 seconds for duplication with Q

2 processes and 30 seconds for triplica-

tion with Q
3 processes. In addition to the e�ciency, we provide the average number of errors

and recoveries per million hours of work, the optimal checkpointing period Topt(Popt) and the
optimal number of processes Popt.

E�ciency. First, we observe in the �rst column that the di�erence between the theoretical
e�ciency and the simulated e�ciency remains small (< 5% absolute di�erence), which shows
the accuracy of the �rst-order approximation. Then, with very few errors (MTBE = 106),
we observe that duplication is always better than triplication. This is as expected, since the
maximum e�ciency for duplication is 0.5 (assuming α = 0 and no error), while the maximum
e�ciency for triplication is 0.33. However, as theMTBE decreases, triplication becomes more
attractive and eventually outperforms duplication. With a checkpoint cost of 30 minutes (�rst
row), the MTBE required is around 28 hours for process triplication to win and 20 hours
for group triplication to win. With smaller checkpoint costs, such as 60 seconds (second row)
and 30 seconds (third row), checkpoints can be more frequent and the MTBE required for
triplication to win is pushed down to a couple of hours and a couple of minutes, respectively.

Number of errors and recoveries. The second column presents the number of errors
and the corresponding number of recoveries per million hours of work. The number of errors
is always higher than the number of recoveries, because multiple errors can occur during a
period (before the checkpoint, which is the point of detection), causing a single recovery. At
MTBE = 102, almost half of the errors that occurred with duplication were actually hidden
behind another error. Even more errors were hidden with group triplication, since one more
error (in a di�erent replica) is required to cause a recovery. Finally, (almost) all errors were
hidden with process replication, which is able to handle many errors, as long as they strike in
di�erent processes.

Optimal checkpointing period. The third column shows the optimal length of the pattern.
In order to cope with the increasing number of errors and recoveries, the length of the optimal
period becomes smaller. Note that the length of the period for group triplication is comparable
to that for duplication, around one day whenMTBE = 106 down to a couple of minutes when
MTBE = 102. However, the length of the pattern for process triplication is always higher by
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several orders of magnitude, from more than 10 days when MTBE = 106 down to a couple
of hours when MTBE = 102.

Optimal number of processes. With α = 10−6, the application has ample parallelism, so
the optimal number of processes to use is always Q

2 = 5 · 105 for duplication and Q
3 ≈ 3.3 · 105

for triplication, except when MTBE = 102 and c = 1, 800, where the optimal number of
processes for duplication is ≈ 3 ·105 and the optimal number of processes for group triplication
is ≈ 2 · 105.

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105

O
pt

im
al

N
um

be
ro

fp
ro

ce
ss

es

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0.0

0.1

0.2

0.3

0.4

0.5

E
ffi

ci
en

cy

Duplication Sim.
Proc Trip. Sim.
Group Trip. Sim.
Duplication Th.
Proc Trip. Th.
Group Trip. Th.

106 105 104 103 102

System MTBE

0

50

100

150

200

250

N
um

be
ro

fR
ec

ov
er

ie
s

pe
r

10
6

ho
ur

s
of

w
or

k

Number of Errors
Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

101

102

103

104

105

106

107

108

109

1010

O
pt

im
al

P
at

te
rn

Le
ng

th

Proc Trip.
Group Trip.
Duplication

106 105 104 103 102

System MTBE

0 · 105

1 · 105

2 · 105

3 · 105

4 · 105

5 · 105

6 · 105

7 · 105
O

pt
im

al
N

um
be

ro
fp

ro
ce

ss
es

Proc Trip.
Group Trip.
Duplication

Figure 1: Impact of System MTBE on the e�ciency with c= 1, 800, d= 0 (top), c= 60, d= 0
(middle), c=0, d=107 (bottom) and α=10−6.

7.3 Impact of sequential fraction (Amdahl)

Figure 2 presents two additional simulation results for α = 10−7 and α = 10−5. With a small
fraction of sequential work (left plots), the e�ciency is improved (≈ 85% of the maximum
e�ciency for duplication and ≈ 95% for triplication at MTBE = 106), and both duplication
and triplication use all processes available. On the contrary, with a higher sequential fraction
of work (right plots), the e�ciency drops (< 20% of the maximum e�ciency for duplication
and < 30% for triplication at MTBE = 106), and using more processes does not improve the
e�ciency and only contributes to increasing the number of errors. Therefore, these results
suggest that even when using replication or triplication, there comes a point where it is
no longer bene�cial to use all available processes. In this example, when MTBE = 102,
duplication and group triplication would use fewer than 2 · 105 processes (one �fth of the
available resources). Process triplication, on the other hand, still utilizes all the resources and
outperforms the other two schemes in terms of the e�ciency across the whole range of system
MTBE.
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Figure 2: Impact of sequential fraction (in Amdahl's Law) on e�ciency and optimal number
of processes with α=10−7 (left) and α=10−5 (right).

7.4 Impact of number of processes

Figure 3 shows the impact of the number of processes on the simulated e�ciency of di�erent
replication scenarios. In addition, we also show (as big dots) the theoretical e�ciency obtained
with the optimal number of processes from Theorems 2, 3 and 6. By varying the number of
processes, we �nd that the simulated optimum (that yields the best e�ciency) matches our
theoretical optimal number of processes closely. We can also see that process triplication scales
very well with increasing number of processes. As opposed to group triplication, which has to
recover from a checkpoint if just two errors strike in two di�erent replicas, process triplication
bene�ts from the additional process: from a resilience point of view, each process acts as a
bu�er to handle one more error; in other words, the probability that two errors strike the two
replicas of the same process decreases, thereby improving the e�ciency.
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Figure 3: Impact of the number of processes on the e�ciency with MTBE = 104 (left),
MTBE = 103 (right), Q = 106, c = 1n800, d = 0, and α = 10−5.

7.5 Summary

Results suggest that duplication is more e�cient than triplication for high MTBE (e.g. 105

seconds for C = 30 minutes). If process triplication is available, then it is always more e�cient
for smaller MTBE: its e�ciency remains stable despite the increasing number of failures. If
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process triplication is not available, we show that group triplication is slightly more e�cient
than duplication for small MTBE, but the gain is small. Furthermore, the impact of the
sequential fraction of work α (in Amdahl's Law) is twofold: it limits the e�ciency (e.g. 15% of
the maximum with α = 10−5 for for both duplication and triplication), and it is a major factor
in limiting the optimal number of processes (e.g. one tenth of the platform with α = 10−5

and Q = 106 at MTBE = 102).

8 Conclusion

Silent-errors represent a major threat to the HPC community. In the absence of application-
speci�c detectors, replication is the only solution. Unfortunately, it comes with high cost: by
de�nition, the e�ciency is upper-bounded by 0.5 for duplication, and by 0.333 for triplication.
Are these upper bounds likely to be achieved? If yes, it means that duplication should always
be preferred to triplication. If not, it means that in some scenarios, the striking of errors is so
frequent that duplication, and in particular group duplication, is not the right choice.

The major contribution of this paper is to provide an in-depth analysis of process and
group duplication, and of process and group triplication. Given a level n of replication, and
a set of application/platform parameters (speedup pro�le, total number or processes, process
MTBE, checkpoint time, etc), we derive closed-form formulas for the optimal period size and
optimal resource usage, and for the overall e�ciency of the approach. This allows to choose
the best value of n. A set of simulations demonstrate the accuracy of the model and analysis.
Our computer-algebra sheets and simulator code are made publicly available, so that one
can instantiate their preferred scenario. Altogether, this paper has laid the foundations for a
better understanding of the impact of silent errors on HPC computing at scale.

Future work will be devoted to combining replication and checkpointing to mitigate both
fail-stop failures and silent errors. Partial replication is another topic to explore, if the ap-
plication comes as a work�ow whose tasks are atomic components: one could assign di�erent
replication levels (duplication, triplication or more) to the di�erent tasks, depending upon
their criticality in terms of longest paths, number of successors, etc.
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