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Abstract

This manuscript presents the formulation and implementation of a novel reduced order

variational multiscale enrichment (ROVME) method for elasto-viscoplastic problems. This

method provides a hierarchical model order reduction technique based on the eigenstrain con-

cept to approximate the fine scale response resolved at subdomains of interest. By eliminating

the requirement of direct fine scale discretization, the computational effort associated with the

variational multiscale enrichment (VME) method is significantly reduced. The model order

reduction is achieved in the scale-coupled inelastic problem by automatically satisfying the

microscale equilibrium state through the eigenstrain concept and coarse discretization of in-

elastic strain fields within the microscale domain. The inelastic material behavior is idealized

with coupled Perzyna type viscoplasticity and flow stress evolution based on the Johnson-

Cook model. Numerical verifications are performed to assess the capabilities of the proposed

methodology, against the direct VME method with detailed fine scale resolutions. The veri-

fication results demonstrate high accuracy and computational efficiency of the reduced order

VME framework for elasto-viscoplastic problems with material heterogeneity.
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1 Introduction

We are concerned with efficiently evaluating mechanics problems with global-local character.

Global-local refers to a class of problems, in which it is necessary to capture the detailed fine

scale behavior at small subdomains of the problem. Typically the response within the remain-

der of the domain is of secondary importance and approximated using coarse discretization or

coarse scale modeling. A number of computational methods have been proposed including the

global-local finite element method [38, 40, 31, 13, 18], the S-version finite element method [12],

the domain decomposition method [30], the generalized finite element method [9, 21], mul-

tiscale coupling based on Lagrange multiplier method [32], among others. These approaches

permit the incorporation of additional geometric features such as crack tips [12, 9, 21], as well

as material heterogeneities [30] at local subdomains with accurately captured load fields and

response mechanisms. However, for many problems, the computational complexity associated

with resolving the local features even for small subdomains could be prohibitive, notwithstand-

ing a few examples based on very high performance computing [35].

A number of recent multiscale computational methods are also well suited to address prob-

lems that exhibit global-local character. Particularly the multiscale methods which permit

the evaluation of scale inseparable problems such as multiscale finite element method [22, 11],

multiscale aggregating discontinuities [5, 47], numerical subgrid upscaling [2, 3], variational

multiscale enrichment [41, 42, 51] among others have been shown to successfully address

global-local problems. The common idea behind these approaches is the additive split of

the principal response fields into macro (or coarse) and micro (or fine) components with equal

order of magnitude (in contrast to scale separable models, where the fine component is con-

sidered a perturbation to the coarse component [4, 20, 17, 48]). The coarse component of the

response is evaluated using a coarse grid whereas the fine scale response is evaluated using

a fine grid resolving the features of the small scales. Similar to earlier global-local methods,

the computational cost of these approaches are large enough to prohibit evaluation of realistic

problems.

Variational multiscale method (VMM) originally proposed by Hughes et al. [23] allows

the infusion of a fine scale response in an otherwise coarse representation. In contrast to the

above mentioned approaches, the fine scale response is either evaluated analytically or semi-

analytically through variational projection [25, 26]. The projection based approach eliminates

the need to resolve the fine scale behavior, hence providing a tremendous computational ef-

ficiency. Garikipati and Hughes [15, 16] employed the analytical fine scale Green’s operator

for strain localization problems. Hughes and Sangalli [24] further optimized the projection

operator for advection-diffusion problems. Masud and Xia [33] developed a stabilized VMM

based on variational projection for small strain inelasticity. Masud and Truster [34] extended
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the stabilized VMM for nearly incompressible elasticity. Arbogast [2, 3], Juanes and Dub [27]

performed the projection through numerical Green’s functions to solve porous media flow prob-

lems. To the best of the authors’ knowledge, the projection approach has not been employed

to address complex response mechanisms induced by material heterogeneities at the fine scale.

The variational multiscale enrichment [41, 42, 51] method, a variant of the numerical subgrid

algorithm, has been recently proposed to study problems with fine scale material heterogene-

ity. This approach relies on the resolution of the fine scale problems which is computationally

expensive for simulation of large scale systems.

In the current manuscript, we provide an alternative reduced order modeling approach

in the context of variational multiscale enrichment method to address global-local problems.

The proposed model order reduction approach is based on the concepts of transformation field

analysis pioneered by Dvorak and coworkers [10]. The main idea is to express the response

field as a function of influence functions and coefficient tensors that are computed at the

preprocessing stage prior to a structural analysis. The influence functions ensure that the

microstructural equilibrium is a-priori satisfied for arbitrary states of deformation. While this

approach has been previously applied in the context of computational homogenization [39, 43,

8], it has not been previously formulated for scale inseparable multiscale methods, to the best

of the authors’ knowledge. This manuscript presents the reduced order variational multiscale

enrichment (ROVME) formulation for heterogeneous materials that exhibit elasto-viscoplastic

behavior. The implementation procedure and numerical approaches employed are described.

The proposed ROVME approach is thoroughly verified against the direct variational multiscale

enrichment (VME) method [51]. The proposed approach is able to capture the local and global

response mechanisms with reasonable accuracy at the fraction of the cost.

This manuscript provides the following novel contributions: (1) The eigenstrain-based re-

duced order modeling approach is extended to scale inseparable problems; (2) The local prob-

lem within the VME framework is evaluated based on a much reduced approximation basis

without significant loss in accuracy; and (3) The ROVME approach provides the ability to con-

trol efficiency/accuracy characteristics since the model order is controlled within the reduced

order modeling framework.

The remainder of this manuscript is organized as follows: Section 2 provides the problem

statement and governing equations of the VME method. Section 3 details the reduced order

VME formulation for inelastic mechanical problems with elasto-viscoplastic material behavior.

Section 4 illustrates the implementation strategy of the ROVME methodology. Section 5

presents the numerical verification studies including global-local response and assessment of

computation efficiency. Section 6 provides the conclusions and future research directions.
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Figure 1: The schematic representation of: (a) the overall problem domain; (b) the
enrichment region; (c) an enrichment domain with full discretization.

2 Variational Multiscale Enrichment

We start by setting up the governing equations of the direct variational multiscale enrichment

(VME) method, which serves as the starting point for the proposed model order reduction

approach. Within the problem domain, the material is taken to behave elasto-viscoplastically.

The setting of the problem formulation for the variational multiscale enrichment of viscoplastic

materials have been discussed in detail in Ref. [51]. Since the proposed reduced order model

also relies on it, we provide a review of the problem setting below. The domain of the structure

is denoted as Ω ⊂ Rnsd (Fig. 1) where nsd is the number of spatial dimensions. The equilibrium

equation is expressed as:

∇ · σ(x, t) = 0; x ∈ Ω, t ∈ [0, to] (1)

where, x and t are the position and time coordinates, respectively; σ is the stress tensor; ∇
is the gradient operator; (·) is the inner product; and to is the end of the observation period.
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The body force term could be incorporated into the formulation without significant difficulty.

In the context of the applications considered in the study, the body force is often negligible

compared with the external loads. In other applications such as of thin films or soft materials,

the effect of the body force may be non-trivial. The time variability of the response fields stems

from the quasi-static (as opposed to static) behavior induced by the presence of the viscous

term in the constitutive behavior. That is the rate of loading affects constitutive response,

making the problem time-dependent. The constitutive equation is expressed in the rate form

as:

σ̇(x, t) = L(x, t) : [ε̇(x, t)− ε̇vp(x, t)] (2)

in which, L is the tensor of elastic moduli; ε and εvp denote total strain and viscoplastic strain

tensors, respectively. The superposed dot indicates material time derivative and (:) the double

inner product. The boundary conditions are given as:

Dirichlet B.C.: u(x, t) = ũ(x, t); x ∈ Γu (3)

Neumann B.C.: σ(x, t) · n = t̃(x, t); x ∈ Γt (4)

where, ũ is the prescribed displacement along the Dirichlet boundary, Γu; t̃ is the prescribed

traction along the Neumann boundary, Γt. The external boundary is decomposed such that

∂Ω = Γ = Γu ∪ Γt and Γu ∩ Γt ≡ ∅.
The problem domain, Ω, is decomposed into two non-overlapping subregions, as illustrated

in Fig. 1:

Ω = Ωs ∪ Ωb; Ωs ∩ Ωb ≡ ∅ (5)

where, Ωb is the enrichment region and Ωs is the substrate region. In the enrichment region,

the microstructural heterogeneities are resolved. In the substrate region, a coarse scale rep-

resentation of the homogenized microstructure is assumed to be sufficient for describing the

mechanical response accurately. The enrichment region, Ωb, is further discretized into a series

of non-overlapping enrichment domains. The discretization is performed in a manner that

each of the discretized enrichment domains can be represented by a single finite element at the

coarse scale level, as illustrated in Fig. 1:

Ωb =

nen⋃
α=1

Ωα; Ωα ∩ Ωβ ≡ ∅ when α 6= β (6)

where, nen denotes the total number of enrichment domains in the structure. Within each en-

richment domain, the microstructural heterogeneity is resolved and the local fine scale solution

is numerically evaluated.

In the variational multiscale enrichment method, the displacement field is decomposed into
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macroscale and microscale components through an additive two-scale decomposition:

u(x, t) = uM (x, t) +

nen∑
α=1

H(Ωα)umα (x, t) (7)

where, superscripts M and m denote the macroscale and microscale fields, respectively. The

macroscale indicates the entire domain of the structure of interest (or when high gradients are

present, the length scale of the process zone), whereas the microscale denotes the enrichment

domain which resolves the microstructural heterogeneities. The concepts of the macro- and

microscales are identical to those posited in scale separable theories (e.g. homogenization), the

only difference being the characteristic size ratio is larger than zero. In the present formulation,

the displacement field is resolved into macro- and micro- components through Eq. (7). The

Heaviside function, H(Ωα), is employed to ensure that the microscale displacement field, umα ,

contributes to the displacement field only on the closure of the enrichment domain, Ωα.

We seek to establish variational forms to evaluate the macroscale and microscale dis-

placement fields. The macroscale response is sought such that uM ∈ VM (Ω), in which

VM (Ω) ⊂ [H1(Ω)]nsd is the trial solution space for the macroscale. The microscale re-

sponse within the enrichment domain, Ωα, is determined such that umα ∈ Vα(Ωα), in which

Vα(Ωα) ⊂ [H1(Ωα)]nsd is the trial solution space for the microscale. For the uniqueness and

stability of the decomposition shown in Eq. (7), linear independence of the macroscale and

the microscale solution spaces is necessary [25, 15]. The solution space is the direct sum of the

macroscale and microscale solution spaces [42]:

V(Ω) = VM (Ω)⊕
nen⊕
α=1

Vα(Ωα) (8)

Similar to the displacement field decomposition in Eq. (7), additive decomposition of the test

function is performed as:

w = wM +

nen∑
α=1

H(Ωα)wm
α (9)

where, wM ∈ WM (Ω) ⊂ [H1
0 (Ω)]nsd is the macroscale test function and wm

α ∈ Wα(Ωα) ⊂
[H1(Ωα)]nsd is the microscale test function of the enrichment domain, Ωα. The test function

space, W(Ω), is decomposed using the additive sum as in Eq. (8).

In order to ensure the response field continuity along the inter-enrichment domain inter-

faces, the homogeneous Dirichlet boundary condition (residual-free bubble) is assumed along

the microscale boundaries [6, 25]:

umα (x, t) = 0; x ∈ Γα (10)
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Remark 1. In the context of direct VME, it is also possible to impose other boundary

conditions (e.g., mixed boundary conditions proposed in Refs. [51, 42], periodic or Neumann

boundary conditions) along the enrichment boundaries, some of which were demonstrated

to provide better accuracy. The model order reduction is formulated using Dirichlet bound-

ary conditions only. While the generalization to periodic boundary conditions is relatively

straightforward, the model order reduction formulation using Neumann and mixed boundary

conditions may include additional complications pertaining to the definition of time-invariant

reduced order basis functions (influence functions) described in the next section.

Employing the two-scale decomposition of the displacement field and the test function, the

macroscale equilibrium is obtained from Eq. (1) and the corresponding boundary conditions,

by considering vanishing microscale test functions:∫
Ω
∇wM : σ dΩ−

∫
Γt

wM · t̃ dΓ = 0 (11)

Similarly, the weak form of the microscale problem at an arbitrary enrichment domain, α,

yields: ∫
Ωα

∇wm
α : σ dΩ = 0; α = 1, 2, ...nen. (12)

The detailed formulation and mathematical constructs necessary to allow the multiscale decom-

position is explained in Ref. [51] and skipped herein for brevity. Substituting the displacement

decomposition (Eq. (7)) into Eq. (2), the stress-strain relationship is expressed as a function

of the macro- and micro- variables in the rate form as:

σ̇ = L :

[
ε̇M (uM ) +

nen∑
α=1

H(Ωα) ε̇mα (umα )− ε̇vp(σ,uM ,um)

]
(13)

While the proposed reduced order formulation can be extended to other forms of evolution

equations, we employ a Perzyna-type viscoplasticity to describe the behavior of the mate-

rial [51]. As illustrated in Fig. 1, the proposed modeling approach requires the evolution of

the viscoplastic strain of nph + 1 materials, where nph denotes the number of phases within

the microstructure. The additional material corresponds to the “homogenized” material defin-

ing the behavior within the substrate region, Ωs. All materials are assumed to follow the

same general constitutive form, with separate material parameter sets defining the behavior

of each constituent. In the current study, the properties of the substrate material are ob-

tained through the mixture theory. For more complex constitutive behavior, the homogenized

macroscopic properties and the associated constitutive model forms can be obtained using

the computational homogenization theory [14, 28, 52], based on sequential multiscale model-
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ing [19], effective medium theories such as the linear comparison medium method [45], among

others.

The rate effect of the presented quasi-static problem is time dependent which is character-

ized by the evolution of the viscoplastic strain as:

ε̇vp = γ

〈
f

σy

〉q ∂f
∂σ

(14)

where, γ is the fluidity parameter; σy the flow stress; q the viscoplastic hardening parameter;

〈·〉 the Macaulay brackets (i.e., 〈·〉 = ((·) + | · |)/2); and f denotes the loading function which

is defined using the classical J2 plasticity:

f(σ, εvp) =
√

3σ̄ − σy(ε̄vp) (15)

in which, σ̄ is the second invariant of the deviatoric stress tensor, s = σ − tr(σ)δ/3; tr(·) the

trace operator; δ the Kronecker delta; and ε̄vp denotes the effective viscoplastic strain defined

as:

ε̄vp =

∫ t

0

˙̄εvp dτ ; ˙̄εvp =

√
2

3
ε̇vp : ε̇vp (16)

As a function of the effective viscoplastic strain, the flow stress is defined based on the Johnson-

Cook model [44, 51]:

σy = A+B(ε̄vp)n (17)

where, A,B and n are material parameters. Comparing with the standard Johnson-Cook

model, the strain rate effect is modeled directly using the Perzyna formulation and the tem-

perature dependence is suppressed for simplicity.

The macroscale and microscale response fields, along with their corresponding test func-

tions, are discretized using the standard Bubnov-Galerkin approach. The finite element spaces

are shown in the following:

VM (Ω) ≡

{
uM (x, t)

∣∣∣ uM (x, t) =

ND∑
A=1

NA(x) ûMA (t); ûMA (t) = ûM (xA, t) if xA ∈ Γu

}
(18)

Vα(Ωα) ≡

{
umα (x, t)

∣∣∣ umα (x, t) =

ndα∑
a=1

nα,a(x) ûmα,a(t); ûmα,a(t) = ûα(xa, t) if xα ∈ Γuα

}
(19)

in which, ND and ndα denote the number of nodes associated with the finite element base in

the macroscale discretization of Ω, and the microscale discretization of Ωα, respectively; NA

is the shape function for the macroscale field and nα,a is the shape function for the microscale

response; xA and xa are the nodal coordinates in the corresponding scale. Overhat denotes
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the nodal coefficients of the corresponding response field.

3 Reduced Order Variational Multiscale Enrichment

In the direct variational multiscale enrichment method that was proposed in Refs. [41, 42,

51], the microscale structure is fully discretized into finite elements according to the material

heterogeneity, as illustrated in Fig. 1(c). The numerical assessment of the microscale problems

is therefore computationally expensive, especially when the microstructure is complicated and

the number of enrichment domains is large. In the current manuscript, an eigenstrain-based

model reduction technique [43] is employed for efficient evaluation of the microscale problems.

3.1 Numerical evaluation of the microscale problem

We start by decomposing the microscale displacement field as follows:

umα (x, t) =

ND∑
A=1

Hα
A(x) · ûMα

A (t) +

∫
Ωα

hα(x, x̂) : εvp(x̂, t) dx̂ (20)

where, ûMα
A denotes the macroscale nodal coefficient corresponding to the Ath node of the

enrichment domain, Ωα. Hα
A, a second order tensor, is the linear elastic influence function in

Ωα. hα(x, x̂) (x, x̂ ∈ Ωα), a third order tensor, is the influence function associated with the

inelastic deformation within the enrichment domain. In the absence of inelastic processes, the

second term on the right hand side of Eq. (20) vanishes. The microscale displacement field is

then expressed using influence functions (Hα
A) acting on the finite element basis (described by

the nodal coefficients of the macroscale element over the enrichment domain) leveraging the

linearity of the problem as proposed by Refs. [2, 3]. In the presence of inelastic deformation, the

second component is obtained by considering the inelastic strain field as spatially variable force

acting on the microstructure, and using the Green’s function idea to compute the microscale

displacement contribution as a function of the spatially variable inelastic strain (eigenstrain)

field [7]. Equation (20) is valid under the conditions of small deformation theory and additive

split of the strain tensor. In the presence of geometric nonlinearity and plasticity models that

employ multiplicative split, this decomposition is not directly valid as the inelastic influence

functions become time (or load amplitude) dependent.

The influence functions Hα
A and hα are determined from the microscale weak form shown in

Eq. (12). Employing the constitutive equation (i.e., Eq. (13)) and the microscale displacement

field discretization defined in Eq. (20), the weak form of the microscale problem becomes
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(α = 1, 2, ...nen):

ND∑
A=1

[(∫
Ωα

∇wm
α : L : ∇Hα

A dΩ +

∫
Ωα

∇wm
α : L · ∇NA dΩ

)
· ûMα

A (t)

]
+

∫
Ωα

∇wm
α : L :

[∫
Ωα

∇hα(x, x̂) : εvp(x̂, t) dx̂− εvp(x, t)
]
dΩ = 0

(21)

Considering the elastic state (i.e., when the enrichment domain undergoes deformation in the

absence of the inelastic process), Eq. (21) is reduced to:

ND∑
A=1

[(∫
Ωα

∇wm
α : L : ∇Hα

A dΩ +

∫
Ωα

∇wm
α : L · ∇NA dΩ

)
· ûMα

A (t)

]
= 0 (22)

We note that the displacement coefficients, ûMA vary with time only, while ∇wm
α and ∇NA are

functions of the space coordinates with no variation in time. The governing equation for the

linear-elastic influence function, Hα
A, then becomes:∫

Ωα

∇wm
α : L : ∇Hα

A dΩ = −
∫

Ωα

∇wm
α : L · ∇NA dΩ; ∀ A = 1, 2, ..., ND (23)

In the presence of inelastic deformation and in view of Eq. (22), Eq. (21) yields:∫
Ωα

∇wm
α : L :

[∫
Ωα

∇hα(x, x̂) : εvp(x̂, t) dx̂− εvp(x, t)
]
dΩ = 0 (24)

The viscoplastic strain field within the enrichment domain Ωα is expressed as:

εvp(x, t) =

∫
Ωα

δd(x− x̂)εvp(x̂, t) dx̂; ∀x ∈ Ωα (25)

where δd denotes the Dirac delta distribution. Substituting Eq. (25) into Eq. (24) yields the

weak form equation for the inelastic influence function hα(x, x̂):∫
Ωα

∇wm
α : L : ∇hα(x, x̂) dΩ =

∫
Ωα

∇wm
α : L δd(x− x̂) dΩ; ∀x̂ ∈ Ωα (26)

The influence functions, Hα
A and hα, are evaluated numerically. The detailed finite element

solution of Eq. (23) is provided in [2, 3]. The numerical evaluation of the inelastic influence

function, involving the approximation of the Dirac distribution and the details of a numerical

treatment, is provided in Ref. [43]. While possible and straightforward, direct computation of

the inelastic influence function is costly and is not needed in the reduced model formulation

as further described below. Representing the microscale displacement field with the influence

functions Hα
A (A = 1, 2, ..., ND) and hα, the microscale weak form, Eq. (21), is automatically
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satisfied for arbitrary inelastic strain of macroscale displacement states.

3.2 Reduced order microscale problem

The total number of degrees of freedom in the enrichment domain problem is reduced by

replacing the fully resolved microscale discretization with a reduced order microscale parti-

tioning. The reduced order partitioning is performed such that each enrichment domain is

decomposed into NPα subdomains (parts):

Ωα =

NPα⋃
γ=1

Ωα
γ ; Ωα

γ ∩ Ωα
η ≡ ∅ when γ 6= η (27)

where γ and η are the indices of parts in an arbitrary enrichment domain Ωα. The stress and

inelastic strain fields are discretized using the separation of variables as [43]:

σ(x, t) =

NPα∑
γ=1

Nα
γ (x) σαγ (t); εvp(x, t) =

NPα∑
γ=1

Nα
γ (x) µαγ (t); x ∈ Ωα (28)

where, σαγ and µαγ are the stress and inelastic strain coefficients, respectively. Nα
γ denotes

shape function associated with part Ωα
γ , such that:

Nα
γ (x) =

1, if x ∈ Ωα
γ

0, elsewhere
(29)

The above discretization therefore leads to a piecewise constant approximation of the stress

and inelastic strain fields over the enrichment domain. The stress and inelastic strain fields are

discontinuous within the enrichment domain, which is consistent with the C0 continuous finite

element approximation of the displacement field. For instance, as the number of parts NPα

reaches the number of elements in the microscale discretization for constant strain elements, the

approximations are of the same order. Substituting the reduced order microscale partitioning

(Eq. (28)) into Eq. (20), the microscale displacement field becomes:

umα (x, t) =

ND∑
A=1

Hα
A(x) · ûMα

A (t) +

NPα∑
γ=1

[∫
Ωα

hα(x, x̂) Nα
γ (x) dx̂ : µαγ (t)

]

=

ND∑
A=1

Hα
A(x) · ûMα

A (t) +

NPα∑
γ=1

[∫
Ωαγ

hα(x, x̂) dx̂ : µαγ (t)

] (30)
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Similarly, substituting Eq. (28) into Eq. (13), the constitutive equation for enrichment domain

Ωα yields:
NPα∑
γ=1

Nα
γ (x) σαγ (t) =

ND∑
A=1

SαA(x) · ûMα
A (t) +

NPα∑
γ=1

Pα
γ (x) : µαγ (t) (31)

in which, the coefficient tensors are defined for an arbitrary enrichment domain Ωα (α =

1, 2, ..., nen) :

SαA(x) = L(x) · ∇NA(x) + L(x) : ∇Hα
A(x); ∀ A = 1, 2, ..., ND (32)

and for each part Ωα
γ (γ = 1, 2, ..., NPα):

Pα
γ (x) = L(x) :

∫
Ωαγ

∇hα(x, x̂) dx̂− L(x) Nα
γ (x) (33)

Integrating both sides of Eq. (31) over part Ωα
η of enrichment domain Ωα, the constitutive

equation on part η (x ∈ Ωα
η ) is simplified to:

σαη (t) =

ND∑
A=1

SαηA · ûMα
A (t) +

NPα∑
γ=1

Pα
ηγ : µαγ (t) (34)

Since the stress and inelastic strain coefficients are constant on each part, the homogenized

coefficient tensors on each part Ωα
η within the enrichment domain Ωα is defined as:

SαηA =
1

|Ωα
η |

∫
Ωαη

SαA(x) dΩ; x ∈ Ωα
η (35)

Pα
ηγ =

1

|Ωα
η |

∫
Ωαη

Pα
γ (x) dΩ; x ∈ Ωα

η (36)

The time-independent coefficient tensors, SαηA and Pα
ηγ , are obtained using the influence func-

tions, Hα
A and hα. Since the influence functions satisfy the microscale equilibrium, as discussed

in Section 3.1, the stresses computed using the coefficient tensors, SαηA and Pα
ηγ , automati-

cally satisfy microscale equilibrium for arbitrary macroscale displacement and inelastic strain

coefficients. The corresponding rate-form constitutive equation is:

σ̇αη (t) =

ND∑
A=1

SαηA · ˙̂uMα
A (t) +

NPα∑
γ=1

Pα
ηγ : µ̇αγ (t) (37)
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Remark 2. In the direct VME method where the microstructural features are fully resolved,

the number of degrees of freedom (DOFs) depends on the resolution of the finite element

discretization. In contrast, the number of DOFs in the reduced order VME method depends

on the number of parts (i.e., NPα) within the microstructural partitioning. In order to

achieve computational efficiency, the order of the discretization in Eq. (28) is chosen to

be much smaller than the DOFs associated with the direct finite element discretization of

the enrichment domain. The manner in which the partitioning is made, as well as the

order of the model, impacts the accuracy characteristics of the reduced order model. The

effects of different partitioning strategies have been discussed in the context of computational

homogenization in Ref. [43]. It is also possible to choose shape functions that are not piecewise

constant [36, 37, 46].

Remark 3. The integration of the gradient of the inelastic influence function, P̃α
γ (x) ≡∫

Ωαγ
∇hα(x, x̂) dx̂, is needed in the reduced order microscale problem, instead of the inelastic

influence function itself, hα(x, x̂). Direct assessment of P̃α
γ is performed and the evaluation

of hα(x, x̂) in Eq. (26) is skipped which eliminates unnecessary a-priori computations. Sub-

stituting Eq. (28) into Eq. (24) yields the weak form equation of P̃α
γ (x) for each part Ωα

γ

(γ = 1, 2, ..., NPα): ∫
Ωα

∇wm
α : L : P̃α

γ (x) dΩ =

∫
Ωα

∇wm
α : L : Nα

γ (x) dΩ (38)

4 Computational Implementation

This section provides the detailed decomposition of the numerical implementation of the re-

duced order variational multiscale enrichment method, including the implementation of the

reduced order microscale problem, upscaled macroscale problem and a solution algorithm.

A Newton-Raphson iterative scheme is employed to numerically assess the elasto-viscoplastic

problem described in this documentation. Consider a discrete set of instances with the obser-

vation period: {0, 1t, 2t, ..., nt, n+1t, ..., to}. The viscoplastic slip evolution is discretized based

on a one-parameter family (referred to as θ-rule):

ε̇vp(x, t) = (1− θ)ε̇vp(x, nt) + θε̇vp(x, n+1t); t ∈ [nt, n+1t] (39)

where θ ∈ [0, 1] is an algorithmic parameter. The left subscript n and n+ 1 indicate the value

of a field variable at nt and n+1t, respectively (e.g. nε
vp = εvp(nt)). Note Nα

η (x) = 0 ∀η 6= γ
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when x ∈ Ωα
γ . Employing the rate form of the inelastic strain coefficients (i.e., Eq. (28)), for

each part Ωα
γ in the enrichment domain Ωα, Eq. (39) is equivalent to:

µ̇αγ (t) = (1− θ) µ̇αγ (x, nt) + θ µ̇αγ (x, n+1t); t ∈ [nt, n+1t] (40)

Correspondingly, the evolution equation for the inelastic coefficient, µ̇αγ , is obtained from Eq.

(14) as:

µ̇αγ (σαγ ,µ
α
γ ) = γ

〈√
3σ̄(σαγ )− σy(µαγ )

σy(µαγ )

〉q
∂f(σαγ ,µ

α
γ )

∂σαγ
(41)

4.1 Numerical evaluation of the reduced order microscale prob-

lem

The nonlinear microscale problem defined by Eqs. (37), (40) and (41) is evaluated using the

Newton-Raphson iterative scheme. Substituting Eq. (40) into Eq. (37), the time discretization

of the residual of the constitutive equation for an arbitrary part Ωα
η becomes:

Rα
η ≡ n+1σ

α
η − nσ

α
η −

ND∑
A=1

SαηA ·
(
n+1û

Mα
A − nû

Mα
A

)
− (1− θ) ∆t

NPα∑
γ=1

Pα
ηγ : nµ̇

α
γ − θ ∆t

NPα∑
γ=1

Pα
ηγ : n+1µ̇

α
γ = 0

(42)

In what follows, the left subscript n + 1 of the fields at current configuration is omitted for

clarity of presentation. Considering a first order Taylor series approximation of Eq. (42) and

forming a Newton iteration yield the following residual for the stress-strain equation:

Rα,k+1
η ≈ Rα,k

η +

NPα∑
γ=1

[(
δKηγ I− θ ∆t Pα

ηγ : Cα,k
γ

)
: δσαγ

]

− θ ∆t

NPα∑
γ=1

[
Pα
ηγ : Gα,k

γ : δµαγ

]
−

ND∑
A=1

[
SαηA · δûMα

A

]
= 0

(43)

in which, superscript k denotes Newton iteration counter; δ(·) indicates the increment of

response field (·) during the current iteration (e.g., δûMA = ûM,k+1
A −ûM,k

A ). δKηγ is the Kronecker

delta; I the fourth order identity tensor; and

Cα,k
γ =

(
∂µ̇αγ
∂σαγ

)k
; Gα,k

γ =

(
∂µ̇αγ
∂µαγ

)k
(44)
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The explicit expressions for Cα,k
γ and Gα,k

γ are provided in the Appendix. Note Cα,k
γ and Gα,k

γ

are constant over each part Ωα
γ .

The residual of the kinematic equation (i.e., Eq. (40)) is defined as:

λαγ ≡ µαγ − nµ
α
γ −∆t (1− θ) nµ̇

α
γ −∆t θ µ̇αγ = 0 (45)

Expanding Eq. (45) using the first order Taylor series approximation, the inelastic coefficient

increment at the current Newton iteration is expressed in terms of the stress coefficient as:

δµαγ =
(
I− θ ∆t Gα,k

γ

)−1
:
(
θ ∆t Cα,k

γ

)
: δσαγ −

(
I− θ ∆t Gα,k

γ

)−1
: λα,kγ (46)

Substituting Eq. (46) into Eq. (43), the inelastic coefficients are condensed out to yield:

NPα∑
γ=1

(
Qα,k
ηγ : δσαγ

)
=

ND∑
A=1

(
SαηA : δûMα

A

)
−Vα,k

η (47)

where,

Qα,k
ηγ = δKηγ I− θ ∆t Pα

ηγ : Cα,k
γ − (θ ∆t)2 Pα

ηγ : Gα,k
γ :

(
I− θ ∆t Gα,k

γ

)−1
: Cα,k

γ (48)

Vα,k
η =Rα,k

η + θ ∆t

NPα∑
γ=1

[
Pα
ηγ : Gα,k

γ :
(
I− θ ∆t Gα,k

γ

)−1
: λα,kγ

]
(49)

Considering η = 1, 2, ..., NPα in Eq. (47) separately, the stress increment vector at the enrich-

ment domain Ωα which contains stress increment within each part of the enrichment domain

is obtained as:

δσα =
(
Qα,k

)−1
Sα δûMα −

(
Qα,k

)−1
Vα,k (50)

where Qα,k and Sα are coefficient tensors defined as:

Qα,k =
[
Qα,k
ηγ

]
η,γ∈[1,NPα]

; Sα =
[
SαηA

]
η∈[1,NPα],A∈[1,ND] (51)

and

δσα =

{(
δσα,k+1

1

)T
,
(
δσα,k+1

2

)T
, ...,

(
δσα,k+1

NPα

)T}T
(52a)

δûMα =

{(
δûMα,k+1

1

)T
,
(
δûMα,k+1

2

)T
, ...,

(
δûMα,k+1

ND

)T}T
(52b)

Vα,k =

{(
Vα,k

1

)T
,
(
Vα,k

2

)T
, ...,

(
Vα,k
NPα

)T}T
(52c)
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4.2 Numerical evaluation of the macroscale problem

For the substrate region Ωs, the finite element discretization of the macroscale equations is

standard [51] and only briefly described when necessary. This subsection particularly focuses

on the treatment of the macroscale problem in the enrichment region. The macroscale weak

form is linearized to construct a Newton-Raphson iterative scheme, employing the linearized

reduced order microscale problem stated in the previous section.

Considering the decomposition of the problem domain introduced in Eqs. (5) and (6), the

residual of the macroscale weak form is defined as:

ΨM ≡
nen∑
α=1

Ψ̃M
α + Ψ̃M

s −
nen∑
α=1

Ψ̃MT
α − Ψ̃MT

s = 0 (53)

where,

Ψ̃M
α =

∫
Ωα

∇wM : σ(ûM , ûmα ) dΩ; Ψ̃M
s =

∫
Ωs

∇wM : σ(ûM ) dΩ (54)

Ψ̃MT
α =

∫
Γtα

wM · t̃ dΓ; Ψ̃MT
s =

∫
Γts

wM · t̃ dΓ (55)

Γtα is the part of the enrichment domain boundary that intersects with the Neumann boundary

of the problem domain (Γtα ≡ Γα ∩ Γt); and, Γts is the part of the substrate region boundary

that intersects with the Neumann boundary of the problem domain (Γts ≡ Γs∩Γt). Within the

substrate region, Ωs, the microstructural displacement remains unresolved. The stress field

therefore is a function of the macroscale displacement field only.

Substituting Eq. (28) into Eq. (53), the residual of the macroscale weak form within the

enrichment domain, Ωα, is expressed as:

Ψ̃M
α =

NPα∑
γ=1

∫
Ωαγ

∇wM dΩ : σαγ (t) (56)

Employing the expression of Ψ̃M
α in Eq. (56) and considering the first order Taylor series

approximation, the residual of the macroscale weak form (i.e., Eq. (53)) becomes:

ΨM,k+1 ≈
nen∑
α=1

(
Ψ̃M,k+1
α

)
+ Ψ̃M,k+1

s = 0 (57)

where,

Ψ̃M,k+1
α ≡ Ψ̃M,k

α − Ψ̃MT
α + δΨ̃M

α ; Ψ̃M,k+1
s ≡ Ψ̃M,k

s − Ψ̃MT
s + δΨ̃M

s (58)

and

δΨ̃M
α =

NPα∑
γ=1

(∫
Ωαγ

∇wM dΩ

)
: δσαγ ; δΨ̃M

s =

∫
Ωs

∇wM : δσ(δûM ) dΩ (59)
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Ψ̃MT
α and Ψ̃MT

s denote the prescribed boundary traction terms which do not vary with itera-

tions at a given time step.

Using the standard finite element discretization detailed in Eq. (18) for the macroscale test

function wM , δΨ̃M
α (Eq. (59)) yields:

δΨ̃M
α =

NPα∑
γ=1

[
ND∑
A=1

(∫
Ωαγ

∇NA dΩ ŵM
A

)
: δσαγ

]
(60)

Considering the stress increment (i.e., δσα) defined in Eq. (52a), the matrix form of Eq. (60)

is presented as:

δΨ̃M
α = (Bα)T δσα (61)

where,

Bα =
[
Bα
γA

]
γ∈[1,NPα],A∈[1,ND]

; Bα
γA =

∫
Ωαγ

∇NA dΩ ŵM
A (62)

Substituting the stress coefficient increment (i.e. Eq. (50)) and Eq. (61) into Eq. (58),

the weak form residual of the enrichment domain at the current iteration is presented in the

vector-matrix form as:

Ψ̃M,k+1
α = Kα δûMα − δfα (63)

where,

Kα = (Bα)T
(
Qα,k

)−1
Sα (64)

δfα = (Bα)T
(
Qα,k

)−1
Vα,k − Ψ̃M,k

α + Ψ̃MT
α (65)

The detailed formulation and the standard finite element discretization of Ψ̃M,k+1
s is presented

in [51] and not repeated in the current documentation for brevity.

Assembling the macroscale element stiffness matrices and force increment vectors, the dis-

crete macroscale weak form (i.e., Eq. (57)) at the (k + 1)th iteration of the current time step,

n+1t, is expressed as:

K δûM = δf (66)

where,

K = A
e

Ke (67)

δûM =

{(
δûM,k+1

1

)T
,
(
δûM,k+1

2

)T
, ...,

(
δûM,k+1

ND

)T}T
(68)

δf = A
e
δf e (69)

A denotes the standard finite element assembly operator and e is the dummy index for all
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Figure 2: Reduced order model implementation strategy.

the macroscale finite elements in the problem domain. The linearized system of equations is

evaluated incrementally using the implementation algorithm described in the next subsection.

4.3 Implementation algorithm

The reduced order variational multiscale enrichment (ROVME) method is implemented using

the commercial software package, Diffpack [29]. Diffpack provides a library of C++ classes

to facilitate the development of solution algorithms for complex PDEs. The overall solution

strategy is summarized in Fig. 2, in which the enrichment domain superscript (α) and part

subscript (γ) are omitted for clarity. In the preprocessing phase prior to the macroscale

simulation, SαηA, Pα
ηγ , Sα and Bα for each enrichment domain Ωα are computed using Eqs.

(35), (36), (51) (62) and stored (A = 1, 2, ..., ND; γ = 1, 2, ..., NPα and η = 1, 2, ..., NPα).

They remain constant throughout the macroscale simulation. At an arbitrary time nt, the

system is in equilibrium with the constitutive relations satisfied for the problem domain. The

algorithm seeks to find the equilibrium state at n+1t as follows:

Given: nû
M , nσ, nε

vp and nε̇
vp (nµ

α
γ and nµ̇

α
γ for enrichment domains) at time nt.

Find : ûM ,σ, εvp and ε̇vp (µαγ and µ̇αγ for enrichment domains) at time n+1t.

1. Initialize Newton iterations by setting: k=0, ûM,0 = nû
M , σ0 = nσ, εvp,0 = nε

vp, and

ε̇vp,0 = nε̇
vp (µα,0γ = nµ

α
γ , and µ̇α,0γ = nµ̇

α
γ for enrichment domains).
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2. While not converged, loop over all the macroscale elements within the problem domain

Ω for the current iteration (k + 1):

(1) If the macroscale element is enriched:

a) Compute Cα,k
γ , Gα,k

γ , Qα,k
ηγ , Rα,k

η , λα,kη , Vα,k
η , Ψ̃M,k

α from Eqs. (44), (48), (42),

(45), (49) and (56).

b) Construct Qα,k and Vα,k from Eqs. (51) and (52c); and Kα and δfα from Eqs.

(64) and (65).

(2) If the macroscale element is not enriched :

a) Compute Ke and δf e using the standard finite element procedure [51].

(3) Employing Eqs. (67) and (69), construct the stiffness matrix K and incremental

force vector δf for the macroscale problem.

(4) Solve the macroscale problem (Eq. (66)) for δûM and update the macroscale dis-

placement field with ûM,k+1 = ûM,k + δûM .

(5) If the macroscale element is enriched:

a) Compute the stress increment δσα using Eq. (50) and update the stress field

σα,k+1 = σα,k + δσα.

b) Compute the inelastic strain coefficient increment δµαγ using Eq. (46). Update

the inelastic strain coefficient µα,k+1
γ = µα,kγ + δµαγ .

c) Evaluate the inelastic strain rate coefficient µ̇αγ through Eq. (41).

(6) If the macroscale element is not enriched:

a) Determine the stress increment δσ. Update the stress field σk+1 = σk+δσ [51].

b) Determine the inelastic strain increment δεvp,k+1. Update the inelastic strain

field εvp,k+1 = εvp,k + δεvp,k+1 [51].

c) Evaluate the inelastic strain rate ε̇vp,k+1 from Eq. (14).

(7) Check for convergence:

eM =
‖ûM,k+1 − ûM,k‖2
‖ûM,k+1 − nûM‖2

≤ Convergence tolerance (70)

(8) If convergence is not satisfied, set iteration counter k ← k+ 1 and proceed with the

next iteration.

3. Repeat step 2 with n← n+ 1 until the end of the observation period.
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Remark 4. The convergence of the algorithm is checked for the macroscale displacement

field only. As described in Sections 3.1 and 3.2, all enrichment domain problems satisfy

equilibrium automatically. No separate convergence check is therefore necessary for the

enrichment domains which accelerates the convergence rate for the overall inelastic problem

compared with the direct VME method [51].

Remark 5. For explicit computational scheme, θ = 0,
(
Qα,k

)−1
and Kα remain constant

during the numerical procedure. Repeated evaluation of
(
Qα,k

)−1
and Kα at each iteration

is therefore not performed. While this reduces the computational cost of the simulations, the

standard stability arguments and time step size restrictions apply.

5 Numerical Verification

The reduced order VME (ROVME) method for elasto-viscoplastic problems is thoroughly

verified using numerical simulations. The performance and accuracy characteristics of the

ROVME approach are assessed by comparing the results with those of the direct VME simu-

lations. The accuracy characteristics of the direct VME method compared with full resolution

finite element analyses was previously demonstrated in Refs. [41, 42, 51].

In all simulations considered in this section, the domains are taken to consist of three sep-

arate materials. The heterogeneous material microstructure consists of two phases. A third

material that approximates the properties of the composite domain is employed to idealize

the behavior at the substrate. The material properties of the two elasto-viscoplastic phases

and the corresponding substrate are summarized in Table 1 and the stress-strain curves of

these materials under uniaxial tension are plotted in Fig. 3. The phase I material of the mi-

crostructure behaves similarly to high yield stress commercially pure titanium [1]. The phase

II material is based on low yield stress commercially pure titanium [1]. The properties of

the substrate material are obtained using the mixed theory. While the numerical examples

provided below investigate two-phase microstructures, the proposed formulation is applicable

to arbitrary number of phases and microstructural configurations. A number of multiscale

approaches, such as computational homogenization [14, 28, 52] and sequential multiscale mod-

eling [19], also remain valid to compute the homogenized macroscale behavior in the presence

of multiple phases within the microstructure. These approaches could be used to compute the

substrate domain response.
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Table 1: Materials parameters used in the numerical verification studies.

Material type E [GPa] ν A [MPa] B [MPa] εf n q γ [MPa/hr]

Phase I 107 0.32 480 700 0.15 0.90 1.0 1.0

Phase II 87 0.32 360 100 0.17 0.96 1.0 1.0

Substrate 97 0.32 420 400 0.16 0.93 1.0 1.0
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Figure 3: Stress-strain behavior of the constituent materials under uniaxial tension: (a)
phase I; (b) phase II; and (c) substrate material.
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Figure 4: Numerical models of the square specimen: (a) macroscale discretization and
sketch for uniform tensile load; and (b) macroscale discretization and sketch for pure

shear load.
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Figure 5: Microscale discretization of an enrichment domain with a circular inclusion:
(a) reduced order VME method with 2 parts; and (b) direct VME method.

5.1 Square specimen with circular inclusions

A 2-D plane strain, 0.03 mm × 0.03 mm, square composite specimens are considered to assess

the performance of the proposed reduced order VME method. The macroscale discretiza-

tion and the loading conditions of the specimens are presented in Fig. 4. The macroscale

discretization contains 16 nodes and 9 quadrilateral, bilinear finite elements. Each of the 9

macroscale elements is considered as an enrichment domain and associated with a microstruc-

ture containing a circular inclusion at the center, as shown in Fig. 5. The ratio between the

size of the enrichment domain and the specimen domain is therefore 1/3. Phase I and phase

II materials are identified as dark and light elements, respectively. The reduced order VME

microscale partitioning consists of 2 parts and 6 degrees of freedom (DOFs). The direct VME

microscale grid contains 837 nodes, 786 quadrilateral finite elements and 1674 DOFs. The be-

havior of the square composite domain is investigated under displacement controlled uniform

tension and shear loading conditions. The loading is applied at the strain rate of approxi-

mately 3× 10−4/sec, until the specimen is about to fail (assessed based on ductility stated in

Fig. 3). The time step size is determined such that further refinement does not change the

results significantly. The time step size employed in the simulations is set to 0.36 second and

the convergence tolerance is set to 1× 10−3.

Figure 6 compares the reaction force of the structure vs. the applied displacement as

computed by the direct and reduced order VME models. The displacement in the tensile

loading case refers to that prescribed at the boundary, whereas in the shear loading case is the

displacement of the top right corner (in both vertical and horizontal directions each of which

has the same magnitude and rate as stated above). At the end of the observation period of
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Figure 6: Overall reaction force-displacement comparison for the square specimen with
circular inclusions between the direct VME simulation and the reduced order VME

method: (a) under tension; and (b) under shear.
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Figure 7: Equivalent stress of the central enrichment domain in the square specimen
with circular inclusions: (a) reduced order VME under tension at 432 seconds; (b) direct
VME under tension at 432 seconds; (c) reduced order VME under shear at 396 seconds;

and (d) direct VME under shear at 396 seconds.
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Figure 8: Microscale discretization of an enrichment domain with a circular inclusion:
(a) reduced order VME method with 4 parts; and (b) reduced order VME method with 7

parts.

432 seconds, the tensile specimen is under an applied deformation of 3.6 × 10−3 mm. The

pure shear case has 3.3 × 10−3 mm applied displacement in both directions and the total

simulation time is 396 seconds. The reaction force-displacement plots demonstrate that both

models provide near identical behavior, in both elastic and plastic regimes. Figure 7 presents

the contour plots of the equivalent stress of the central enrichment domain (the macroscale

element at the center of the structure) for both methods, just before failure. The reduced

order VME has only two parts in the microscale structure and the stress field is constant on

each of the parts. On the other hand, the stress distribution smoothly transitions from stiffer

inclusion to the matrix as computed by the direct VME method. The computational cost

of the simulations are compared in Table 2 in terms of the total computational time. The

computational time for the direct VME simulation is shown in hours [hr], whereas the time

for ROVME simulation is presented in minutes [min]. The computational time comparison

demonstrates that the reduced order VME approach is much more efficient compared with the

direct VME method. We note that the improvement in terms of the computational time is

less than the reduction of DOFs.

Table 2: Computational time comparison for square specimen with circular inclusions.

Loading
case

Computational time
Computational

time ratio
Microscopic
DOFs ratio

VME [hr] ROVME [min] VME/ROVME VME/ROVME

Tension 12.50 11.11 67.53 279

Shear 10.70 11.44 56.08 279
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Figure 9: Results of reduced order VME method with different parts: (a) error in
equivalent stress over the enrichment region as a function of simulation time; and (b)

computational time per time step.

To further investigate the computational efficiency of the reduced order VME method,

simulations with more parts in the ROVME microscale discretization are performed based on

the macroscale model and loading condition shown in Fig. 4(a). In addition to the two-part

model as shown in Fig. 5(a), a four-part and a seven-part model as presented in Fig. 8 are

considered. The error over the entire enrichment region at an arbitrary time, t, is computed

as:

eφ(t) =

nen∑
α=1

∥∥φVME(x, t)− φROVME(x, t)
∥∥

2,Ωα

nen∑
α=1

∥∥φVME(x, t)
∥∥

2,Ωα

(71)

where, φVME and φROVME denote a response field (e.g., equivalent stress) computed using the

direct VME method and the reduced order VME method, respectively. ‖ · ‖2,Ωα is the L2

norm of the response field computed over Ωα. Since all 9 macroscale elements are taken to

be enriched in the simulations, the enrichment region is the entire problem domain. For the

ROVME method with different parts, the evolution of error in the equivalent stress over the

enrichment region as a function of simulation time is compared in Fig. 9(a). The computational

time per time step for each simulation is compared in Fig. 9(b). It is observed that the accuracy

of the reduced order VME method improves using the model with more parts. But the rate

of the accuracy improvement decreases when the number of parts is getting larger, indicating

that low order models capture primary response features reasonably well. The computational

time increases superlinearly (0.045 second per part from 2 parts to 4 parts and 0.08 second

per part from 4 parts to 7 parts). We note that due to small problem size, a substantial time

is spent for problem set-up (approximately 82% for the 2-part case).
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Table 3: Multiple Young’s modulus contrasts of the two phases in the enrichment domain.

Case number
Young’s modulus [GPa] Young’s modulus ratio

(Einclusion/Ematrix)Inclusion Matrix

1 100 1 100

2 100 2 50

3 100 10 10

4 100 20 5

5 100 100 1

6 20 100 0.2

7 10 100 0.1

8 2 100 0.02

9 1 100 0.01
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Figure 10: Modulus contrast analysis: (a) error in equivalent stress over enrichment
region; and (b) error in the composite stiffness.
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Figure 11: Microscale discretization of an enrichment domain with random grains: (a)
reduced order VME method with 25 parts; and (b) direct VME method.

To assess the accuracy of the reduced order VME method for phases with higher modulus

contrasts in the enrichment domain, more numerical verifications are performed. The study

is conducted under tensile loading (Fig. 4(a)) using the 2-part reduced order VME model

(Fig. 5(a)). The elastic behavior of all constituents is assumed in the enrichment domain.

Young’s modulus contrasts for 9 cases considered are summarized in Table 3. The Poisson’s

ratio is 0.32 for all the materials. For each case, the error in equivalent stress over the entire

enrichment region is computed using Eq. (71). These errors are plotted in Fig. 10(a) as a

function of modulus contrast. The composite stiffness, Ē, is obtained through the reaction

force - displacement plot of each test (Ē = (reaction force / area) / (displacement/ structural

length)). The errors in the composite stiffness are plotted in Fig. 10(b), with respect to the

modulus contrast. When the modulus ratio is one, the reduced order VME method produces

identical results as the direct VME method (error in both plots is zero), due to the fact that

there is no material heterogeneity in the enrichment domain (material properties are the same

everywhere). As the modulus contrast gets larger, the error in stress rises in a decreasing rate.

The same pattern is observed for the error in the composite stiffness. For modulus ratio lower

than unity, an increase in composite stiffness error followed by a reduction as a function of

modulus contrast is observed. When the inclusion modulus is small, the stiffness is dominated

by the matrix properties only, which is well-captured by the reduced order VME approach.

5.2 Square specimen with random grains

A second set of numerical simulations is performed to study the accuracy of the proposed

approach in capturing the local microstructural response characteristics. The microstructure

contains 25 randomly placed square grains with two material phases, phase I (dark) and phase
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Figure 12: Error in equivalent stress over the enrichment region as a function of
simulation time for the square specimen with random grains: (a) under tension; and (b)

under shear.

II (light), as illustrated in Fig. 11. In reduced order model partitioning, each grain is taken

as a part. The direct VME method further discretizes each grain with 25 finite elements.

The ROVME microscale partitioning has 25 parts and 75 DOFs whereas the direct VME

microscale grid contains 625 quadrilateral finite elements with 676 nodes and 1352 DOFs.

Identical macroscale discretization and loading conditions of the specimen as shown in Fig. 4

are used in the current example. The loading rate, time step size and observation periods for

both loading cases are the same as those in Section 5.1.

Identical to the previous numerical examples, the enrichment region is the entire problem

domain which includes all of the 9 macroscale elements. The evolution of error in the equivalent

stress over the enrichment region as a function of simulation time is shown in Fig. 12 for both

tensile and shear loading conditions. At an arbitrary time step, the error is evaluated using

Eq. (71). It can be observed that the error in stress slightly accumulates along with the increase

in plastic strain. The maximum error is at the end of the simulation where failure is set to

initiate. The increase in error in time is consistent with the example in Section 5.1, due to

the slightly larger hardening modulus predicted by the reduced order model. For the shear

loading case, the error in stress slightly decreases shortly after entering the plastic regime due

to the stress redistribution within the enrichment region which softens the rigid kinematics

of the reduced order model. The error starts to accumulate once the stress redistribution

is completed. At the onset of failure initiation within the structure, the highest error in

equivalent stress is 2.5% for the tensile loading and 1.7% for the shear loading, as shown in

Fig. 12. The local equivalent stress contours for the central enrichment domain, corresponding

to the prescribed peak load at the end of the simulations, are shown in Fig. 13. The stress

contours demonstrate that the reduced order VME method captures the local stress variation

28

http://dx.doi.org/10.1016/j.cma.2015.11.020


This is a preprint of the journal article. Please visit http://dx.doi.org/10.1016/j.cma.2015.11.020
for the published version.

(a) (b)

(c) (d)

σ̄ [MPa]

700

800

900

1000

1100

1200

1300

1400

0 0.002 0.004 0.006 0.008 0.01
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

x [mm]

y 
[m

m
]

 

 

0 0.002 0.004 0.006 0.008 0.01
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

x [mm]

y 
[m

m
]

 

 

0 0.002 0.004 0.006 0.008 0.01
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

x [mm]

y 
[m

m
]

 

 

0 0.002 0.004 0.006 0.008 0.01
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01

x [mm]

y 
[m

m
]

 

 

Figure 13: Equivalent stress contour of the central enrichment domain in the specimen
with random grains: (a) reduced order VME under tension at 432 seconds; (b) direct

VME under tension at 432 seconds; (c) reduced order VME under shear at 396 seconds;
and (d) direct VME under shear at 396 seconds.

within the microstructure reasonably well (0.8% - 2.5% error). The overall reaction force vs.

prescribed displacement comparison is presented in Fig. 14. The figure shows that the global

behavior of the reduced order VME method closely agrees with the direct VME method, in

both elastic and plastic states. The comparisons of the global and local responses verified

the high accuracy of the reduced order VME method, even using relatively coarse microscale

partitioning. The computational time of both simulations are listed and compared in Table

4. The reduced order VME reduces the computational effort of the direct VME method by at

least the same reduction in DOFs, which points to very favorable computational cost of the

proposed approach.
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Figure 14: Overall reaction force-displacement comparison for the square specimen with
particles between the direct VME simulation and the reduced order VME method: (a)

under tension; and (b) under shear.

Table 4: Computational time comparison for square specimen with particles.

Loading
case

Computational time
Computational

time ratio
Microscopic
DOFs ratio

VME [hr] ROVME [min] VME/ROVME VME/ROVME

Tensile 13.69 15.81 51.94 18.03

Shear 4.75 15.94 17.89 18.03

5.3 L-shaped specimen with random grains

The proposed ROVME method is further verified using the numerical analysis of an L-shaped

specimen which contains both enrichment and substrate regions while subjected to more com-

plex stress states. The geometry, loading condition and the macroscale discretization are

illustrated in Fig. 15. The enrichment region (identified with dark shading) is placed within

the area of stress concentration, around the inner corner of the specimen. The characteris-

tic size scale ratio defined as the ratio between the size of the enrichment domain and the

length scale associated with high stress gradients around the corner is approximately 1/6. The

macroscale mesh consists of 192 quadrilateral elements, 27 of which are enriched. Within the

enrichment domains of the enrichment region, the microstructural geometry for reduced order

model partitioning and for the direct discretization are identical to those shown in Fig. 11. The

material properties of the phases, as well as within the substrate region, are summarized in

Table 1. The specimen is subjected to uniform displacement controlled loading in the vertical

direction along the right edge of the specimen as shown in Fig. 15. The maximum amplitude

of the loading is 0.0256 mm applied in 576 seconds, at a rate of 4.4 × 10−5 mm/sec, which

corresponds to the onset of failure initiation within the specimen. Further loading would lead
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Figure 15: Macroscale discretization and sketch for L-shaped specimen.
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Figure 16: Error in equivalent stress as a function of time for the L-shaped specimen.

to failure within the structure. The simulation time step size is set to be 0.72 second and the

convergence tolerance is taken to be 1 × 10−3 which is the same as employed in Sections 5.1

and 5.2 .

Figure 16 illustrates the evolution of error in equivalent stress within the enrichment region,

which is plotted as a function of simulation time. The errors at each time step is computed using

Eq. (71). The maximum error in the stress is less than 2.7% which further substantiates the

accuracy characteristics of the proposed reduced order VME methodology. The error in stress

slightly decreases after the onset of the plastic deformation, due to the stress redistribution

over the enrichment region which softens the rigid kinematics of the reduced order model.

The error increases thereafter and reaches the maximum value at the end of the simulation,

similar to the previous example. Figure 17 presents the comparison of the overall force -
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Figure 17: L-shaped specimen overall reaction force-displacement comparison between the
direct VME simulation and the reduced order VME method.

displacement curves from the direct VME method and the reduced order VME simulation.

The close agreement of the two model predictions demonstrates that the proposed reduced

order approach accurately captures the global elasto-viscoplastic response of the structure.

The equivalent stress contours at the end of the simulations are presented for both of the

approaches in Fig. 18. For both approaches, the stress contours are obtained by combining

the fine and coarse scale responses and reconstructing the total stress in the post-processing

phase. Since the resolution of the reduced order VME method is much lower than the direct

VME method, the stress contour of the reduced order VME method is slightly smoother than

the direct VME method. The stress variation of the ROVME simulation within the domain

closely approximates that predicted by the reference model. The computational cost of the

simulations are presented in Table 5, which clearly shows the computational benefits of the

reduced order VME methodology.

Table 5: Computational time comparison for L-shaped specimen.

Computational time
Computational

time ratio
Microscopic
DOFs ratio

VME [hr] ROVME [min] VME/ROVME VME/ROVME

66.66 31.14 128.44 18.03

6 Conclusions and Future Research

This manuscript presented a novel reduced order variational multiscale enrichment method for

elasto-viscoplastic problems. The proposed ROVME approach allows reduced order microscale
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Figure 18: Equivalent stress contours of the L-shaped specimen with random grains at 576
seconds: (a) reduced order VME model; (b) direct VME model.

representation at critical subdomains while maintaining most of the accuracy of the direct VME

method. This approach extends the eigenstrain-based reduced order modeling [43] to scale

inseparable problems. With coarse stress and inelastic strain fields discretization within the

microscale domain, the proposed formulation automatically satisfies the microscale equilibrium

state. The performance of the proposed computational framework is assessed against direct

variational multiscale enrichment method with full microscale discretization. It is verified that

the reduced order VME method accurately captures the local response within the subdomains

of interest, as well as the global behavior of the structure.

To expand the applicability of the proposed computational framework, particularly to

structures operating in severe environments, several issues remain to be resolved. In order to

address structural response subject to mechanical loads in aggressive environments, aggres-

sive agent diffusion and coupling effect should be incorporated into the current computational

framework and evaluated in conjunction with the mechanical problems. For example, many

coupling mechanisms of aggressive agent diffusion in structures operating in high temperature

environment has been identified in Refs. [44, 49, 50]. The temperature-dependent material

behavior should also be considered in problems involving thermal transients or high tempera-

tures. Moreover, the incorporation of failure response is critical to the prediction of structural

life. In its current state, the proposed reduced order VME approach has the ability to accu-

rately predict failure initiation. The challenge remaining is the accurate failure propagation

prediction. Other important issues, such as the automated determination of the size of the

enrichment region (as well as the enrichment domains) and the analysis of the response sub-

ject to cyclic loading, would also extend the applicability of the proposed method. The issues
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mentioned above will be investigated in the near future.

7 Acknowledgements

The authors gratefully acknowledge the research funding from the Air Force Office of Scientific

Research Multi-Scale Structural Mechanics and Prognosis Program (Grant No: FA9550-13-1-

0104. Program Manager: Dr. David Stargel). We also acknowledge the technical cooperation

with Dr. Ravinder Chona and Dr. Ravi Penmetsa at the Air Force Research Laboratory,

Structural Sciences Center.

References

[1] Department of Defense Handbook - Metallic material and elements for aerospace vechicle

structures, MIL-HDBK-5J, 2003.

[2] T. Arbogast. Implementation of a locally conservative numerical subgrid upscaling scheme

for two-phase Darcy flow. Comput. GeoSci., 6:453–481, 2002.

[3] T. Arbogast. Analysis of a two-scale, locally conservative subgrid upscaling for elliptic

problems. SIAM J. on Numer. Anal., 42:576–598, 2004.

[4] I. Babuska. Homogenization and application: mathematical and computational prob-

lems, in: B. Hubbard (Ed.), Numerical Solution of Partial Differential Equations - III.

SYNSPADE, Academic Press, New York, 1975.

[5] T. Belytschko, S. Loehnert, and J. Song. Multiscale aggregating discontinuities: A method

for circumventing loss of material stability. Int. J. Numer. Meth. Engng., 73:869–894,

2008.

[6] F. Brezzi, L. P. Franca, T. J. R. Hughes, and A. Russo. b =
∫
g. Comput. Methods Appl.

Mech. Engrg., 145:329–339, 1997.

[7] R. Courant and D. Hilbert. Methods of Mathematical Physics, Volume 1. Wily-VCH,

1991.

[8] R. Crouch and C. Oskay. Symmetric meso-mechanical model for failure analysis of het-

erogeneous materials. Int. J. Solids Struct., 8:447–461, 2010.

[9] C. A. Duarte and D. J. Kim. Analysis and applications of a generalized finite element

method with global–local enrichment functions. Comput. Methods Appl. Mech. Engrg.,

197:487–504, 2008.

34

http://dx.doi.org/10.1016/j.cma.2015.11.020


This is a preprint of the journal article. Please visit http://dx.doi.org/10.1016/j.cma.2015.11.020
for the published version.

[10] G.J. Dvorak and Y. Benveniste. On transformation strains and uniform fields in multi-

phase elastic media. Proc. R. Soc. Lond. A, 437:291–310, 1992.

[11] Y. Efendiev and T. Y. Hou. Multiscale Finite Element Methods-Theory and Applications.

Springer-Verlag, New York, 2009.

[12] J. Fish. The s-version of the finite element method. Computers & Structures, 43:539–547,

1992.

[13] J. Fish and S. Markolefas. Adaptive global-local refinement strategy based on the interior

error estimates of the h-method. Int. J. Numer. Meth. Engng., 37:827–838, 1994.

[14] J. Fish, K. Shek, M. Pandheeradi, and M. Shephard. Computational plasticity for com-

posite structures based on mathematical homogenization: Theory and practice. Comput.

Methods Appl. Mech. Engrg., 148:53–73, 1997.

[15] K. Garikipati and T. J. R. Hughes. A study of strain localization in a multiple scale

framework: The one-dimensional problem. Comput. Methods Appl. Mech. Engrg., 159:

193–222, 1998.

[16] K. Garikipati and T. J. R. Hughes. A variational multiscale approach to strain localization

formulation for multidimensional problems. Comput. Methods Appl. Mech. Engrg., 188:

39–60, 2000.

[17] M. G. D Geers, V. Kouznetsova, and W. A. M. Brekelmans. Gradient-enhanced com-

putational homogenization for the micro-macroscale transition. J. Phys. IV, 11:145–152,

2001.

[18] L. Gendre, O. Allix, P. Gosselet, and F. Comte. Non-intrusive and exact global/local

techniques for structural problems with local plasticity. Comput. Mech., 44:233–245,

2009.

[19] S. Ghosh, K. Lee, and S. Moorthy. Two scale analysis of heterogeneous elastic-plastic

materials with asymptotic homogenization and voronoi cell finite element model. Comput.

Methods Appl. Mech. Engrg., 132:63–116, 1996.

[20] J. M. Guedes and N. Kikuchi. Preprocessing and postprocessing for materials based on the

homogenization method with adaptive finite element methods. Comput. Methods Appl.

Mech. Engrg., 83:143–198, 1990.

35

http://dx.doi.org/10.1016/j.cma.2015.11.020


This is a preprint of the journal article. Please visit http://dx.doi.org/10.1016/j.cma.2015.11.020
for the published version.

[21] V. Guptaa, C.A. Duartea, I. Babuska, and U. Banerjee. Stable GFEM(SGFEM): Im-

proved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture me-

chanics. Comput. Methods Appl. Mech. Engrg., 289:355–386, 2015.

[22] T. Y. Hou and X. Wu. A multiscale finite element method for elliptic problems in com-

posite materials and porous media. J. Comput. Phys., 134:169–189, 1997.

[23] T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann

formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput.

Methods Appl. Mech. Engrg., 127:387–401, 1995.

[24] T. J. R. Hughes and G. Sangalli. Variational multiscale analysis: the fine-scale Green’s

function, projection, optimization, localization, and stabilized methods. SIAM J. Numer.

Anal., 45:539–557, 2007.

[25] T. J. R. Hughes, G. R. Feijoo, and J. B. Quincy. The variational multiscale method - a

paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 166:3–24,

1998.

[26] A. Hund and E. Ramm. Locality constraints within multiscale model for non-linear

material behaviour. Int. J. Numer. Meth. Engng., 70:1613–1632, 2007.

[27] R. Juanes and F.-X. Dub. A locally conservative variational multiscale method for the

simulation of porous media flow with multiscale source terms. Comput. Geosci., 12:273–

295, 2008.

[28] V.G. Kouznetsova, M.G.D. Geers, and W.A.M. Brekelmans. Multi-scale second-order

computational homogenization of multi-phase materials: a nested finite element solution

strategy. Comput. Methods Appl. Mech. Engrg., 193:5525–5550, 2004.

[29] H. P. Langtangen. Computational partial differential equations: Numerical methods and

diffpack programming. Springer, 2003.

[30] O. Lloberas-Valls, D. J. Rixen, A. Simone, and L. J. Sluys. Domain decomposition

techniques for the efficient modeling of brittle heterogeneous materials. Comput. Methods

Appl. Mech. Engrg., 200:1577–1590, 2011.

[31] K. M. Mao and C. T. Sun. A refined global-local finite element analysis method. Int. J.

Numer. Meth. Engng., 32:29–43, 1991.

36

http://dx.doi.org/10.1016/j.cma.2015.11.020


This is a preprint of the journal article. Please visit http://dx.doi.org/10.1016/j.cma.2015.11.020
for the published version.

[32] D. Markovic and A. Ibrahimbegovic. On micro-macro interface conditions for micro scale

based FEM for inelastic behavior of heterogeneous materials. Comput. Methods Appl.

Mech. Engrg., 193:5503–5523, 2004.

[33] A. Masud and K. Xia. A variational multiscale method for inelasticity: Application

to superelasticity in shape memory alloys. Comput. Methods Appl. Mech. Engrg., 195:

4512–4531, 2006.

[34] A. Masud, T. J. Truster, and L. A. Bergman. A variational multiscale a posteriori error

estimation method for mixed form of nearly incompressible elasticity. Comput. Methods

Appl. Mech. Engrg., 200:3453-3481, 2011.

[35] K. Matous, H.M. Inglis, X. Gu, D. Rypl, T.L. Jackson, and P.H. Geubelle. Multiscale

modeling of solid propellants: From particle packing to failure. Compos. Sci. Technol.,

67:1694–1708, 2007.

[36] J. C. Michel and P. Suquet. Nonuniform transformation field analysis. Int. J. Solids

Struct., 40:6937–6955, 2003.

[37] J.C. Michel and P. Suquet. Computational analysis of nonlinear composite structures

using the nonuniform transformation field analysis. Comput. Methods Appl. Mech. Engrg.,

193:5477–5502, 2004.

[38] C. D. Mote. Global-local finite element. Int. J. Numer. Meth. Engng., 3:565–574, 1971.

[39] H. Moulinec and P. Suquet. A numerical method for computing the overall response of

nonlinear composites with complex microstructure. Comput. Methods Appl. Mech. Engrg.,

157:69–94, 1998.

[40] A. K. Noor. Global-local methodologies and their application to nonlinear analysis. Finite

Elements Anal. Des., 2:333–346, 1986.

[41] C. Oskay. Variational multiscale enrichment for modeling coupled mechano-diffusion prob-

lems. Int. J. Numer. Meth. Engng., 89:686–705, 2012.

[42] C. Oskay. Variational multiscale enrichment method with mixed boundary conditions for

modeling diffusion and deformation problems. Comput. Methods Appl. Mech. Engrg., 264:

178–190, 2013.

[43] C. Oskay and J. Fish. Eigendeformation-based reduced order homogenization for failure

analysis of heterogeneous materials. Comput. Methods Appl. Mech. Engrg., 196:1216–

1243, 2007.

37

http://dx.doi.org/10.1016/j.cma.2015.11.020


This is a preprint of the journal article. Please visit http://dx.doi.org/10.1016/j.cma.2015.11.020
for the published version.

[44] C. Oskay and M. Haney. Computational modeling of titanium structures subjected to

thermo-chemo-mechanical environment. Int. J. Solids Struct., 47:3341–3351, 2010.

[45] P. Ponte Castaneda. The effective mechanical properties of nonlinear isotropic composites.

J. Mech. Phys. Solids, 39:45–71, 1991.

[46] S. Roussette, J.C. Michel, and P. Suquet. Nonuniform transformation field analysis of

elastic-viscoplastic composites. Compos. Sci. Technol., 69:22–27, 2009.

[47] J. Song and T. Belytschko. Multiscale aggregating discontinuities method for micro-macro

failure of composites. Composites: Part B, 40:417–426, 2009.

[48] K. Terada and M. Kurumatani. Two-scale diffusion-deformation coupling model for ma-

terial deterioration involving micro-crack propagation. Int. J. Numer. Meth. Engng, 83:

426–451, 2010.

[49] H. Yan and C. Oskay. A three-field (displacement-pressure-concentration) formulation for

coupled transport-deformation problems. Finite Elements Anal. Des., 90:20–30, 2014.

[50] H. Yan and C. Oskay. A viscoelastic-viscoplastic model of titanium structures subjected

to thermo-chemo-mechanical environment. Int. J. Solids Struct., 56-57:29–42, 2015.

[51] S. Zhang and C. Oskay. Variational multiscale enrichment method with mixed boundary

conditions for elasto-viscoplastic problems. Comput. Mech., 55:771–787, 2015.

[52] X. Zhang and C. Oskay. Eigenstrain based reduced order homogenization for

polycrystalline materials. Comput. Methods Appl. Mech. Engrg., 2015. DOI:

10.1016/j.cma.2015.09.006

38

http://dx.doi.org/10.1016/j.cma.2015.11.020


This is a preprint of the journal article. Please visit http://dx.doi.org/10.1016/j.cma.2015.11.020
for the published version.

A Computation of C and G matrices

This appendix section presents the details of Cα
γ =

(
∂µ̇αγ
∂σαγ

)
and Gα

γ =
(
∂µ̇αγ
∂µαγ

)
that are illustrated

in Section 4.1. This section provides the formulation for 3D case which can be simplified to

2D case, such as plane stress or plane strain problem, based on the problem nature. For the

clarity of presentation, the bold symbol in this section denotes vector notation. Recall the

evoluation of plastic strain (Eq. (14)), the loading function (Eq. (15)) and the flow stress (Eq.

(17)). Define

F ≡
f(σαγ ,µ

α
γ )

σy(µαγ )
(72)

and

a ≡
∂f(σαγ ,µ

α
γ )

∂σαγ
=
√

3
∂σ̄αγ
∂σαγ

=

√
3

2σ̄αγ
σ̃αγ (73)

where, in 3D case σ̃αγ is expressed in a vector format as:

σ̃αγ =
{
sαγ (xx), sαγ (yy), sαγ (zz), 2σαγ (xy), 2σαγ (yz), 2σαγ (zx)

}T
(74)

in which s denotes deviatoric stress components. Consequently, the inelastic coefficient evolu-

tion equation is expressed as:

µ̇αγ = γ 〈F 〉q a (75)

and Cα,k
γ becomes:

Cα
γ =

(
∂µ̇αγ
∂σαγ

)
= γ

[
〈F 〉q ∂a

∂σ
+ q 〈F 〉q−1 ∂ 〈F 〉

∂f

∂f

∂σ
⊗ a

]
= γ 〈F 〉q

[
∂a

∂σ
+
q [sign(F ) + 1]

2 〈f〉
a⊗ a

] (76)

The derivative of Eq. (73) with respect to the stress coefficient is obtained as:

∂a

∂σαγ
=

√
3

2σ̄αγ
M−

√
3

3σ̄αγ
a⊗ a; M =

∂σ̃αγ
∂σαγ

(77)

In 3D case, M is expressed as:

M =



2
3 −1

3 −1
3 0 0 0

−1
3

2
3 −1

3 0 0 0

−1
3 −1

3
2
3 0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2


(78)
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Employing M, Cα
γ is expressed as:

Cα
γ = γ 〈F 〉q

[ √
3

2σ̄αγ
M +

(
q [sign(F ) + 1]

2 〈f〉
−
√

3

3σ̄αγ

)
a⊗ a

]
(79)

Taking derivative of Eq. (75) with respect to inelastic strain coefficient, Gα
γ yields:

Gα
γ =

∂µ̇αγ
∂µαγ

=
γ q

2
〈F 〉q−1 [sign(F ) + 1]

∂F

∂µαγ
⊗ a (80)

Through chain rule, the derivative of Eq. (72) with respect to inelastic strain coefficient is

obtained as:

∂F

∂µαγ
=

∂f

∂µ̄αγ

∂µ̄αγ
∂µαγ

1

σy
− f

σy2

∂σy
∂µ̄αγ

∂µ̄αγ
∂µαγ

= −2

3
Bn(µ̄αγ )n−2

(
σy + f

σy2

)
µαγ (81)

Substituting Eq. (81) into Eq. (80) yields:

Gα
γ = −[sign(F ) + 1]

(
γ q B n

3

)
〈F 〉q−1 (µ̄αγ )n−2

(√
3σ̄αγ
σy2

)
µαγ ⊗ a (82)
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