
A Framework for Unambiguous and Extensible
Specification of DSMLs for Cyber-Physical Systems

Gabor Simko1, David Lindecker1, Tihamer Levendovszky1

Ethan K. Jackson2, Sandeep Neema1, Janos Sztipanovits1
1Vanderbilt University, Nashville, TN
2Microsoft Research, Redmond, WA

Abstract—Increased emphasis on developing model-based de-
sign methods for Cyber-Physical Systems (CPS) brings new chal-
lenges to the specification of domain specific modeling languages
(DSML) and the integration of heterogeneous CPS components.
Since CPS are composed of tightly integrated physical and
computational components, the modeled domains include both
physical and computational systems. Formal specification of
physical and computational languages as well as their integration
remains an interesting challenge. In this paper we introduce
a formal logic based framework for formal specification and
simulation, that is supported by the fixed-point logic language
FORMULA. As a representative case study, we define both the
structural and behavioral semantics for a bond graph language,
and demonstrate the reusability and extensibility provided by the
approach by extending the language to support hybrid dynamics.

I. INTRODUCTION

Cyber-Physical Systems (CPS) are heterogeneous systems
composed of computational and physical components mostly
appearing in safety-critical applications, such as automotive,
aviation, medical or plant design. Developing safety-critical
components is extremely costly, therefore component reusabil-
ity and extensibility are key design objectives. Component-
based engineering is a technique that facilitates designing and
building large systems based on these principles.

Whereas the main concern for embedded systems design
is the implementation of computational processes that appro-
priately interact with their known physical and computational
environment, in CPS design significant emphasis is placed on
the co-design of physical and computational components, and
their integration. Furthermore, the vast diversity of languages
used in CPS brings new challenges to their integration as
well. Heterogeneous physical behavior (electrical, mechanical,
thermal, and others), CAD models and computational behavior
are often modeled using heterogeneous languages, where the
reusability and extensibility of these complicated solutions are
crucial for cost effectiveness. Furthermore, understanding the
composition of such diverse languages is demanding. In order
to facilitate co-design, reusability and to ensure the integrity
of the components, we need precise structural and behavioral
specifications.

Modeling physical systems calls for high-level modeling
languages, which makes Model-Based Engineering (MBE) an
often used paradigm for CPS modeling. MBE heavily relies on
the usage of Domain-Specific Modeling Languages (DSMLs).

DSMLs are languages that are tailored to modeling the im-
portant aspects of a specific domain, while using the common
terminology known by the experts of the specific domain.
Importantly, DSMLs also facilitate the raise of abstraction
levels, which in turn increases conciseness, effectiveness and
is a fundamental goal in CPS modeling. Often, DSMLs are
themselves modeled by a DSML, in which case we refer to
such DSMLs as metamodels, and the models described by the
DSML are the well-formed models of the DSML metamodel.

A DSML is a tuple L = 〈A,C, S,MS ,MC〉, where C is the
concrete syntax, A is the abstract syntax, MC is a syntactic
mapping from A to C, S is the semantic domain, and MS is
the semantic mapping [1]. The concrete syntax is the notation
used for representing models, for instance textual syntax or
visual syntax. The abstract syntax of a language describes
the set of concepts provided by the language, the relations
between them, and the well-formedness rules that distinguish
the well-formed models from the ill-formed models. The
semantic domain together with the semantic mapping defines
the formal description behind the concepts and relations: their
interpretation in the context of the language.

In general, a model has a structure and a behavior. Accord-
ingly, specification of modeling languages requires support for
specifying both structural and behavioral semantics.

Structural semantics describes the meaning of model in-
stances in terms of their structure: all the well-formed models
that are defined by the abstract syntax [1]. Structural semantics
is described by a mapping from model instances into a two-
valued domain, which distinguishes well-formed models from
ill-formed models.

Behavioral semantics is represented as a mapping of the
model into a mathematical domain that is sufficiently rich
for capturing essential aspects of the behavior [2] (such
as dynamics). In other words, the explicit representation of
behavioral semantics of a DSML requires two distinct com-
ponents: (i) a mathematical domain and a formal language for
specifying behaviors, and (ii) a formal language for specifying
transformation between domains.

Different types of behavioral semantics can be distinguished
based on the formalism of the description, for instance de-
notational semantics or operational semantics. Denotational
semantics describes the semantics of the language by using
some well-defined mathematical formalism. We can specify
the denotational semantics of a DSML by defining a se-



mantic domain based on the mathematical formalism and a
denotational semantic mapping that transforms models of the
DSML to the elements of the semantic domain. Operational
semantics describes the step-wise execution semantics of a
computational language. Formal specification of operational
semantics involves defining the transformation that specifies
how the system can evolve through its states. For example,
Structural Operational Semantics (SOS) is a way to describe
operational semantics.

Computational systems are inherently based on discrete
events time semantics, and are often defined by operational
semantics based on abstract automata notion, or by deno-
tational semantics based on discrete mathematics. Physical
modeling languages, however, differ in several ways from
computational languages [3]. (i) Physical structure is con-
strained and described by physical laws, thus the structure
cannot be arbitrarily shaped according to user demands. The
structural semantics of the language must reflect these physical
constraints. (ii) The time semantics in physical systems is
continuous-time in contrast with discrete events. (iii) Physical
interaction (behavior) is defined through variable sharing [4]
and the denotational semantics is represented using differential
algebraic equations (DAE).

In the case of physical systems, the behavior is a set of
continuous-time trajectories that are usually described by a
set of differential algebraic equations (DAE). Thus, a natu-
ral choice for the denotational semantic domain of physical
systems modeling languages is the notation of DAEs, which
indirectly describes the behavior of the represented system.
The denotational semantic domain of hybrid systems is more
complicated, since it has to deal with continuous-time dynam-
ics and discrete behavior at the same time. Hybrid system
semantics is an active research area [5].

Given the many complexities of cyber-physical systems, it
is clear that rigorous DSML semantics are essential. In this
paper we develop a formal framework for DSMLs arising in
CPS that: (i) allows unambiguous specification of denotational
semantics for physical modeling languages, (ii) is capable
of integrating computational and physical abstractions, (iii)
supports extensibility of specifications, (iv) is executable, and
facilitates rapid prototyping and simulation of models, (v)
allows mathematical reasoning.

In order to support unambiguous specifications and formal
reasoning, our framework facilitates formal specification based
on mathematical logic, while reusability and extensibility of
the specifications are naturally supported by the formalism.
Furthermore, the specifications are executable, and can be used
for fast prototyping and simulations, which is an important
feature when developing specifications for large systems.
Executability allows systems to be tested before they are built.

We illustrate our framework and its properties described
above with a well-known physical modeling language, the
bond graph language [6]. Our logic programming environment
is a logic programming language called FORMULA [7].
When a design environment adopts a new domain-specific
language, the precise meaning of the model elements must

be described. Therefore, we firstly develop the formalization
for the structure and behavior of a bond graph DSML. Then
the design language needs to be modified and extended to
meet the requirements of the targeted system design. In order
to show how to follow this with extensible specifications, we
formalize another variant of the language, a hybrid bond graph
language [8]. It also illustrates how the integration between
computational and physical parts of the system design can be
formally specified. Finally, we give some intuitive guidelines
how our framework can be generalized to other CPS domains.

The organization of the paper is as follows: Section 2 de-
scribes related work. Section 3 provides an overview of formal
semantics, bond graphs, and FORMULA notation. In Section
4 we formalize the structural semantics of a model based bond
graph language. The syntax of a differential algebraic equation
system in FORMULA, as well as the denotational semantics
of the bond graph language are presented in Section 5. In
Section 6 we extend our case study to the case of hybrid bond
graphs. Finally, we conclude in Section 7.

II. RELATED WORK

Previously, significant effort has been devoted to the formal-
ization of various state machine languages. For example [9]
used rewriting logic (Maude) to specify the behavioral and
structural semantics of state machines. The behavioral seman-
tics of Stateflow is formalized denotationally with lambda-
calculus in [10], while the operational semantics of Stateflow
is formalized using structural operational semantics (SOS) in
[11].

The operational semantics of modeling languages is dis-
cussed in [12] by means of graph transformations. A set
of graph transformation rules define the formal operational
semantics for the language. The operational semantics together
with a well-formed model defines a transition system that can
be formally verified by model checking.

The behavioral semantics of DSMLs are specified in a
translational approach in [1] by means of semantic anchor-
ing and an abstract state machine (ASM) model. A graph
transformation language (GReAT) is leveraged to define the
semantic mapping from the DSML to an ASM language. Our
research goes along the same lines, but instead of using a
graph transformation language and a fixed semantic domain,
we use a logic based language that brings two advantages: (i)
we can specify both the structure and behavior within a single
language; (ii) we support larger flexibility.

The translational approach and weaving approach are dis-
cussed in [13], which also uses ASM models. Semantic
mapping, semantic hooking (anchoring) and semantic meta-
hooking are translational approaches, while the weaving ap-
proach defines executable specifications directly on the ab-
stract syntax of the languages.

Our current work can be considered the continuation of
[14], which describes the application of FORMULA to the
specification of DSMLs. Some of the advantages of using
FORMULA for semantic anchoring is discussed in [15] and
[16].



Fig. 1. A quarter car suspension model using the bond graph language.

Our approach is different from previous solutions in the
following aspects: (i) we discuss formal specification in the
context of CPS systems, (ii) we use an executable fixed-
point logic language, which facilitates model conformance
checking, model finding, bounded model checking and sim-
ulations, (iii) we use the same language for structural and
behavioral specifications, which is advantageous in cases when
certain properties of the behavior can be elaborated only by
understanding the structural semantics of the language.

III. BACKGROUND

A. Bond graphs

A bond graph is a multi-domain graphical representation of
physical systems describing the structure of energy flow in the
system [6]. Regardless of the domain – electrical, mechanical,
thermal, magnetic or hydraulic – the same representation can
be used to describe the flows. Due to their generality, we
chose bond graphs to demonstrate formalization of physical
dynamics in our framework.

The graph contains nodes and bonds (links) between the
nodes (see Fig. 1). Bonds represent the energy exchange
between components and is characterized by the power vari-
ables: the effort and the flow. The name of these variables is
explained by the equation power = effort ·flow . Furthermore,
five node types are distinguished: (i) a dissipative element
called resistance R having exactly one port, (ii) two storage
elements, capacitance C and inertia I, each having exactly one
port, (iii) two power source elements, source of effort Se and
source of flow Sf, each having exactly one port, (iv) two power
conserving elements, transformer TF and gyrator GY, having
exactly two ports, (v) two multi-port topological elements, 0-
junction and 1-junction for composition.

The description indicates that the basic building blocks are
different in some ways, in fact, some hints are also provided
about the possible meanings (storage, source). However, our
formal specification will precisely define these elements. It is
well-known that the behavioral semantics of bond graphs can
be described using a set of differential algebraic equations
(DAE) [6], therefore we will describe the denotational seman-
tics of our bond graph modeling language variant by defining
a semantic mapping from our models to sets of DAEs.

B. FORMULA notation

FORMULA is a constraint logic programming tool devel-
oped at Microsoft Research [17] based on fixed-point logic

and described in detail in [7], [18]. FORMULA expressions
are interpreted over a customizable term algebra, that provides
ways to formalize sets, relation, functions and other elemen-
tary concepts. Furthermore, its fixed-point logic with strati-
fied negation provides an unambiguous and mathematically
founded language for describing constrained models over the
term algebra. In the paper we use the following notation to
describe FORMULA models:

The domain keyword specifies a domain (analogous to
a metamodel) which is composed of type definitions, data
constructors, and rules. A model of the domain consists of
a set of facts (also called initial knowledge) that are defined
using the data constructors of the domain, and the well-formed
models of the domain are distinguished from the ill-formed
models by the conformance rules.

FORMULA has a complex type system based on built-in
types (e.g. Natural, Integer, Real, String, Bool), enumer-
ations, data constructors, and union types. Enumerations are
sets of constants defined by enumerating all their elements, for
example bool ::= {true,false} denotes the usual 2-valued
Boolean type.

Data constructors are constructors for building algebraic
terms. Such terms can represent sets, relations, partial and
total functions, injections, surjections, and bijections. Data
constructor A ::= new (x:Integer, y:String) defines term
(relation) A over pairs of Integers and Strings, where the
optional x and y are the accessors for the respective val-
ues. Data constructor B ::= fun (x:Integer -> y:String)

defines a partial function (functional relation) B from the
domain of Integers to the codomain of Strings. Similarly,
C ::= fun (x:A => y:String) defines a total function from
terms of A to Strings, D ::= inj (x:Integer -> y:String)

defines a partial injective function, and E ::= bij (x:A

=> y:B) defines a bijective function between domain A and
codomain B.

While the previous data constructors are used for defining
initial facts in models, derived data constructors are used
for representing facts derived from the initial knowledge by
means of rules. For example, derived data constructor F

::= (x:Integer, y:String) defines a term F over pairs of
Integers and Strings, which can be used on the left-hand
side of rules.

Union types are unions of types in the set-theoretical sense,
i.e. the elements of a union type are defined by the union of
the elements of the constituent types. FORMULA uses the
notation of T ::= A + B to define type T as the union of type
A and type B.

FORMULA supports the notation of set comprehension in
the form of {head|body}, which denotes the set of elements
formed by head that satisfies body. Set comprehension is
most useful when using built-in operators such as count. For
instance, given a relation Pair ::= new (State,State), the
expression State(X), n = count({Y|Pair(X,Y)}) counts the
number of states paired with state X.

Rules allow information to be deduced. They have the form:
A0(X) :- A1(X), · · ·, An(X), no B1(X), · · ·, no Bm(X).



Fig. 2. DSML of bond graphs.

Whenever these is a substitution for X where all A1, · · ·, An

are derivable and all B1, · · ·, Bm are not derivable, then A0(X)

becomes derivable. The use of negation (no) is stratified, which
implies that rules generate a unique minimal set of derivations,
i.e. a least-fix point.

Type constraint x : A is true iff variable x is of type A,
while x is A is satisfied for all derivations of type A. The
special symbol _ denotes an anonymous variable that cannot
be referred to elsewhere.

The well-formed models of a domain conforms to the
domain specifications. Each FORMULA domain contains a
special conforms rule that determines its well-formed models.

Domain composition is supported through the keywords
extends and includes. Both denote the inheritance of all
types, data constructors and rules, but while domain A

extends B ensures that all the well-formed models of A are
well-formed models of B, definition domain A includes B

might contain well-formed models in A which are ill-formed
models of B.

Finally, FORMULA transformations define rules for cre-
ating output models based on input models and parameters.
Transformations are also specified using rules where the head
terms are the data constructors of the output domain, whereas
the body of rules can contain a mixture of the input and output
terms and the transformation parameters. The semantics of
these transformation rules are simple: if a data constructor
term is deducible using the transformation rules, it will be a
fact in the output domain.

IV. BOND GRAPH STRUCTURAL SEMANTICS

The structure of bond graph represents the energy flows in
the physical system. Accordingly, the structure must follow
the rules enforced by the physical reality, which is reflected
in the structural semantics of the bond graph domain.

We have modeled bond graphs in our metaprogrammable
DSML modeling tool Generic Modeling Environment (GME)
[19]. First we review the metamodel-based abstract syntax, and
then we present the formal structural semantics in FORMULA.

A. GME metamodel of bond graphs

The metamodel of bond graphs in our GME metapro-
grammable tool [19] is shown in Fig. 2 with a similar
notation to UML class diagrams. In brief, atom classes in the
metamodel describe classes on the model level, and connection
classes in the metamodel describe associations on the model
level. Abstract classes (Node, Element, etc.) are denoted with
italic names, and basic bond graph elements are inherited from
these abstract classes. Abstract classes cannot be instantiated,
rather they facilitate the logical grouping of other classes.
Triangles denote inheritance, in which case children inherit
the attributes of their parent(s). Furthermore, whenever a class
can participate in a connection, their derived classes can also
be connected using the same connection.

The models of the bond graph domain contains Node-s and
Bond-s between them. The multiplicity of Bond describes
that each bond connects exactly one source Node to exactly
one destination Node. A Node is either an Element or a
Junction, where an Element is either a OnePort or a
TwoPort element, and Junction is either a ZeroJunction
or a OneJunction. Each Element has a ParameterV alue
attribute that describes its parameter (e.g. resistance), and
is inherited by its children. OnePort elements are either
Source-s, R-esistors or Storage-s. Finally, Storage elements
have an InitialV alue attribute that describes their initial state.

GME allows well-formedness rules through the usage of
OCL constraints (not shown in the figure), for example we
have the following constraint attached to OnePort models:

context: OnePort
inv: self.attachingConnections(Bond)->size = 1

describing the well-formedness rule that OnePort element
must have exactly one connecting bond.

B. FORMULA domain for bond graphs

In order to specify the precise semantic mapping between
bond graphs and equations, we need to formalize the structure
of all the bond graphs. We accomplish this with a term
algebraic specification. In general, we can define a one-to-
one mapping from the GME metamodel to its FORMULA
representation. Each non-abstract class of the metamodel cor-
responds to a data constructor in the FORMULA domain
that can be used to instantiate the class. Further, each class
contributes to a union type containing the constructors of the
class and all the derived classes. Since abstract classes cannot
be instantiated, they only define union types. Finally, OCL
and multiplicity constraints are translated to FORMULA rules.
Since data constructors and union types cannot have the same
name, we distinguish data constructors and corresponding
union types by appending c to the data constructors.

In particular, the FORMULA class constructors of the bond
graph domain are as follows:

Se_c ::= new (id:UID).
Sf_c ::= new (id:UID).
R_c ::= new (id:UID).
C_c ::= new (id:UID).
I_c ::= new (id:UID).



TF_c ::= new (id:UID).
GY_c ::= new (id:UID).
ZeroJunction_c ::= new (id:UID).
OneJunction_c ::= new (id:UID).

Here UID is a unique identifier distinguishing distinct objects
of the classes.

Since there are no derived classes from these non-abstract
classes, the corresponding union types contain only a single
element. For example:

Se ::= Se_c.

The union types for the abstract classes are specified as
follows:

Source ::= Se + Sf.
Storage ::= C + I.
OnePort ::= Source + R + Storage.
TwoPort ::= TF + GY.
Element ::= OnePort + TwoPort.
Junction ::= ZeroJunction + OneJunction.
Node ::= Element + Junction.

Connections are data constructors with two additional argu-
ments for source and destination. Each bond has exactly one
source and one destination, which is captured by the functional
relation.

Bond_c ::= fun (id:UID -> src:Node,dst:Node).

Finally, attributes are defined as primitive data constructors
over the previous union type definitions, thus the FORMULA
encoding correctly represents the inheritance of attributes.
Also note the usage of total functions for ensuring the multi-
plicity of the attributes.

ParameterValue ::= fun (Element => Real).
InitialValue ::= fun (Storage => Real).

Up to this point we have formalized the original GME
metamodel with an equivalent FORMULA domain which
faithfully represents its structure: classes, abstract classes,
attributes and connections.

An important feature of FORMULA is the possibility of
defining derived data constructors that can be used as helper
functions later. To achieve a concise representation for the
bond graph domain, we define the following derived relations:

src(A,A.src), dst(A,A.dst) :- A is Bond.
connects(A,X) :- src(A,X); dst(A,X).
connected(X,Y) :- src(A,X), dst(A,Y).

Here src and dst are derived rules describing total functions
from bonds to their source and destination nodes, connects is
a relation between bonds and its end-points, and connected is
a relation describing connected nodes.

Based on these data constructors, the well-formedness rules
of bond graphs are shown in Fig. 3. The rules are given in the
form of refutation, i.e. they describe the ill-formed models.
Any model which does not satisfy the ill-formedness rules is
considered a well-formed model conforming to the domain of
bond graphs. In lines 1–10 invalidNode describes the rules
of ill-formed nodes, and line 11 describes when a bond graph
model conforms to the bond graph domain.

1 // Oneport elements should have exactly one port.
2 invalidNode :- X is OnePort,
3 count({Y | connects(Y,X)})!=1.
4 // Twoport elements should have exactly two ports.
5 invalidNode :- X is TwoPort,
6 count({Y | connects(Y,X)})!=2.
7 // Twoport elements should have welldirected power
8 // i.e. an incoming and an outgoing bond.
9 invalidNode :- X is TwoPort, no Bond(_,_,X);

10 X is TwoPort, no Bond(_,X,_).
11 conforms :- no invalidNode.

Fig. 3. Well-formedness rules for bond graphs

Lines 1–6 ensure that OnePort elements have exactly one,
and TwoPort elements have exactly two connecting bonds.
Furthermore, two-port elements must have an incoming and an
outgoing bond according to lines 7–10. A bond graph model
is structurally valid if it conforms to the bond graph domain
in line 11, i.e. it does not contain any invalid node or bond.

V. BOND GRAPH DENOTATIONAL SEMANTICS

The behavioral semantics of physical systems is best de-
scribed by differential algebraic equations, and the intercon-
nections of physical components by variable sharing [4]. In our
bond graph DSML, we can define the denotational semantics
by specifying the translation from the metamodel of bond
graphs to the metamodel of differential algebraic equations
(DAEs). For this, we need to define first a language for repre-
senting DAEs, and then, we need to specify the transformation
from the language of bond graphs to the language of DAEs.

A. Differential Algebraic Equation System

In order to be able to map the bond graph elements to
a formal domain, not only the bond graph structure must
be described in FORMULA, but the formal domain – in
our case the equation domain – must also be specified.
We define the abstract syntax of a simple language that is
capable of describing differential algebraic equations (DAEs)
in FORMULA. Such a language defines a set of trajectories:
trajectories that satisfy all the equalities. Hence, the behavior
described by a set of DAEs is exactly those trajectories that
satisfy the conjunction of the equalities.

domain DAEs includes UniqueID
{
term ::= variable + Real + op.
op ::= neg + inv + der + mul + sum.
variable ::= new (id: UID).
neg ::= new (term).
inv ::= new (term).
der ::= new (term).
mul ::= new (term, term).
sum ::= new (id: UID).
addend ::= new (sum, term).
eq ::= new (lhs:term, rhs:term).
assign ::= new (lhs:variable, rhs:term).

}

A term is a (continuous time) variable, a real, the ap-
plication of an operator on a term. We define three unary
operators negation, inversion and derivation, a binary operator
multiplication, and an n-ary operator summation. Addends of



sums are represented as relations between sums and terms.
Furthermore, predicate eq denotes the equality of the left-hand
side and the right-hand side, and assignment operator assign
denotes a continuous-time unidirectional variable assignment
(note that this variable assignment is not the same as in
computer languages).

The interpretation of the terms are given as

variable(i)I = vi(t)

cI = c

neg(x)I = (−xI)
inv(x)I = (1/xI)

der(x)I = (dxI/dt)

mul(x,y)I = (xI · yI)

SI
x =

∑
y∈Yx

yI ,where Yx = {y | Addend(Sx, y)}

eq(x,y)I = (xI = yI)

assign(z,y)I = (zI := yI)

Here x, y are terms, z is a variable, vi(t) is the interpretation
of a variable denoting a continuous-time signal function, and
c is a real constant. Furthermore, the meaning of operator :=
is equality, but extended with the information of causality: the
right-hand side term of the assignment is the cause (source)
of the left-hand side variable.

B. Semantic Mapping
After formally specifying the structure of the bond graph

models and a semantic domain, we describe the semantic
mapping. Our approach builds on the transformation feature
of FORMULA, thus using the same formalism for describing
the structural constraints and the transformation. We think this
is a unique feature of our approach.

Using the domains of bond graphs and differential algebraic
equations, we formalize the denotational semantics of bond
graphs. Each bond i defines two variables, flow fi and effort
ei, indexed by the bond, and each node defines a number
of equations on the connected variables. Furthermore, each
element has a parameter pi, which becomes a constant in the
DAE system.

In order to make the denotational mapping more concise,
we use the following derived data constructors as helpers:

b ::= (Bond,variable,variable).
p ::= (Element,Real).
s ::= (Junction,sum).
b(A, variable(ID("e",A.id.id)),

variable(ID("f",A.id.id))) :- A is Bond.
p(X,Y) :- ParameterValue(X,Y).
s(X,Y) :- X is Junction, Y = sum(X.id).

In this snippet b is a derived rule describing a total function
mapping each bond A to a pair of variables – effort and
flow –, p is an abbreviation for ParameterValue, and s is a
derived rule describing bijective function between Junction-s
and corresponding sum-s.

The rules of denotational semantic mapping is shown in
Fig. 4 and in Table I. Note that unless there are conflicts,

1 transform DenotationalMapping
2 (in1::BondGraph)
3 returns (out::DAEs)
4 {
5 // Source of effort, equation on effort
6 eq(E,P) :- X : Se, connects(A,X),

b(A,E,_),p(X,P).
7 // Source of flow, equation on flow
8 eq(F,P) :- X : Sf, connects(A,X),

b(A,_,F),p(X,P).
9 // Resistance, equation between effort and flow

10 eq(E,mul(P,F)) :- X : R, connects(A,X),
b(A,E,F),p(X,P).

11 // Capacitance, differential equation between effort and flow
12 eq(der(E),mul(inv(P),F)) :- X : C,

connects(A,X), b(A,E,F),p(X,P).
13 // Inertia, differential equation between effort and flow
14 eq(der(F),mul(inv(P),E)) :- X : I,

connects(A,X), b(A,E,F),p(X,P).
15 // Transformer, equations between efforts and flows
16 eq(Ea,mul(P,Eb)),
17 eq(Fb,mul(P,Fa)) :-
18 X : TF, dst(A,X), src(B,X),

b(A,Ea,Fa),b(B,Eb,Fb),p(X,P).
19 // Gyrator, equations between efforts and flows
20 eq(Ea,mul(P,Fb)),
21 eq(Eb,mul(P,Fa)) :-
22 X : GY, dst(A,X), src(B,X),

b(A,Ea,Fa),b(B,Eb,Fb),p(X,P).
23
24 // One junction, summation for signed effort, equality for flow
25 eq(S,0) :- s(X,S), X is OneJunction.
26 addend(S,E) :- X is OneJunction, dst(A,X),
27 b(A,E,_), s(X,S).
28 addend(S,neg(E)) :- X is OneJunction,
29 src(A,X), b(A,E,_), s(X,S).
30 eq(Fa,Fb) :- X : OneJunction,
31 connects(X,A), connects(X,B),
32 b(A,_,Fa), b(B,_,Fb).
33
34 // Zero junction, summation for signed flow, equality for effort
35 eq(S,0) :- s(X,S), X is ZeroJunction.
36 addend(S,F) :- X is ZeroJunction, dst(A,X),
37 b(A,_,F), s(X,S).
38 addend(S,neg(F)) :- X is ZeroJunction,
39 src(A,X), b(A,_,F), s(X,S).
40 eq(Ea,Eb) :- X : ZeroJunction,
41 connects(X,A), connects(X,B),
42 b(A,Ea,_), b(B,Eb,_).
43 }

Fig. 4. Denotational semantics of bond graphs through semantic anchoring

FORMULA automatically uses the concepts of the input
model on the right-hand side of the rules, and the concepts
of the output model on the left-hand side of the rules. In our
case, therefore, we do not have to indicate that eq is a concept
of out, or connects is a concept of in1.

Line 6 describes the equation for source of efforts. The
interpretation for the head of the rule eq(E,P) is e = p, where
the body of the rule describes e and p through the usage of
auxiliary variables x and a, where x is a source of effort (Se)
and a is the bond whose source is x. Furthermore, b(A,E,_)
and p(X,P) find such variables e and p that e denotes the effort
variable of bond a, and p denotes the parameter of node x.

In line 8, the interpretation of eq(F,P) is f = p. The body
of the rule denotes a source of flow x, such that x is the source



TABLE I
CONNECTION BETWEEN BOND GRAPH ELEMENTS, THEIR

REPRESENTATIVE EQUATIONS AND LINES OF PRECISE SPECIFICATION IN
FIG. 4.

Node Equation Lines
Source of effort e = p 6
Source of flow f = p 8
Resistor e = p · f 10
Capacitance de/dt = f/P 12
Inertia df/dt = e/P 14
Transformer ea = p · eb, fb = p · ea 16–18
Gyrator ea = p · fb, eb = p · fa 20–22

One-Junction ∀a, b.(fa = fb),
∑

e = 0 25–28

Zero-Junction ∀a, b.(ea = eb),
∑

f = 0 31–34

of bond a, where the flow on the bond is f , and the parameter
of the source of flow is p.

In line 10, the interpretation of the head of the rule is e =
p · f . The right hand side of the rule matches resistance x,
such that it is the destination of bond a, furthermore e and
f respectively denotes the effort and flow on the bond. The
parameter of the resistance is p.

In line 12 the head of the rule eq(der(E),mul(inv(P),F))

denotes ė = 1/p · f by definition, while the body matches
e and f to be the effort and flow variables of a bond whose
destination is a capacitance, and p is the capacitance parameter.

Similarly, line 14 defines inertia elements. The interpretation
of the head is ḟ = 1/p ·e, where the body of the rule matches
inertia x, which is the destination of bond a. Variables e and
f are the effort and flow variables across the bond, and p is
the parameter of the inertia.

Transformers are defined in lines 16–18 with the equations
ea = p · eb and fb = p · fa, where x is a transformer, a and
b are its bonds and ea, eb, fa and fb are the effort and flow
variables of the bonds, and p is the modulus of the transformer.

Gyrators are defined in lines 20–22 with the equations ea =
p · fb and eb = p · fa, where x is a gyrator, a and b are its
bonds and ea, eb, fa and fb are the effort and flow variables
of the bonds, and p is the gyrator modulus.

Zero-junction denotes common efforts on its bonds (line
34), and the flows along its bonds sum to zero (line 31).
The addends of the summation are denoted in lines 32–33,
which shows the proper signs for the flows. Flows along bonds
directed into the zero-junction are added with positive signs
(line 32), and bonds directed away from the zero-junction
are added with negative signs (line 33). One-junctions are
similarly defined in lines 25–28, only by swapping the role
of effort and flow variables.

VI. EXTENSIBILITY

As discussed in the introduction, component reusability and
extensibility are especially important in the design of CPS
systems. In this section we demonstrate how our framework
supports the extension of the specifications.

In order to show how simple it is with our specification
approach, we extend our bond graph language with physical

domain-specific elements, and with switchable junctions that
can be turned on and turned off by an external controller. This
case study also illustrates how to provide an interface to cyber
parts of the system.

Physical domain specific elements are labeled elements that
belong to the physical domain specified by the label. Such
elements can be considered typed elements where types range
over different physical domains. Switchable junctions extend
the bond graph language with discrete modes of operations.
Such bond graphs are also known as hybrid bond graphs [8].

A. Physical Domain Specific Elements

While the bond graph language is already an efficient multi-
domain physical modeling language, a reasonable requirement
is the explicit specification of physical domains for the graph
elements. The structure of such a language is further con-
strained by the compatibility of the different physical domains,
for instance electrical and mechanical domain elements are
connected through the usage of electric motors and generators.

Using FORMULA, we can quickly augment the bond graph
domain with the necessary definitions:

Domains ::= {Electrical, Mechanical, Hydraulic}.
NotConverter ::= OnePort + Junction.
DomainType ::= fun (NotConverter => Domains).
ConverterDomainTypes ::= fun (TwoPort =>

Domains,Domains).

Here Domains is an enumeration of three physical domains,
DomainType assigns a domain to each bond graph 1-port
element and junction, and ConverterDomainTypes assigns a
source and destination domain to each 2-port element.

Finally, the constraints for valid bond graph connections are
based on the domain matching:

invalidBond :- A is Bond,
DomainType(A.src,X),
DomainType(A.dst,Y), X != Y.

invalidBond :- A is Bond,
DomainType(A.src,X),
ConverterDomainTypes(A.dst,Y,_),
X != Y.

invalidBond :- A is Bond,
DomainType(A.dst,X),
ConverterDomainTypes(A.src,_,Y),
X != Y.

invalidBond :- A is Bond,
ConverterDomainType(A.src,_,X),
ConverterDomainTypes(A.dst,Y,_),
X != Y.

Here we rely on type inference to match only the applicable
rules. The first rule defines a bond invalid if it connects 1-port
or junction elements of different domains, the second and third
rules define a bond invalid if it connects a 1-port or junction
element to a 2-port element of different type, and the fourth
rule defines a bond invalid if it connects two differently typed
2-port elements. If no invalidBond, no invalidDomainType

is deducible for a well-formed bond graph model, the model is
a well-formed model of the extended bond graph metamodel
as well.



Fig. 5. DSML of hybrid bond graphs.

Fig. 6. A hybrid bond graph model.

B. Structure of Hybrid Bond Graphs

Fig. 5 shows the hybrid bond graph GME metamodel, that
we translate to FORMULA and for which we develop the
semantic mapping. An example model is shown in Fig. 6.

In the extended metamodel, switchable junctions are in-
herited both from the abstract class of SwitchableJunction

and from the original junction classes, ZeroJunction and
OneJunction. Therefore, switchable junctions inherit the struc-
ture and behavior of the original junctions, meanwhile they
are extended with attributes for initial state, on events and off
events.

The corresponding FORMULA domain extends the orig-
inal bond graph domain with data constructors for the new
junctions:

SwZeroJunction_c ::= new (id:UID).
SwOneJunction_c ::= new (id:UID).

Also, union types are updated to reflect the structure of
hybrid bond graphs:

SwitchableJunction ::= SwZeroJunction
+ SwOneJunction.

ZeroJunction ::= ZeroJunction + SwZeroJunction.
OneJunction ::= OneJunction + SwOneJunction.
Junctions ::= ZeroJunction + OneJunction

+ SwitchableJunctions.

In the GME metamodel, an enumeration is defined (not
shown) with On and Off values, to represent the initial state of
switchable junctions, and the onEvent and offEvent attributes
are defined as string values. The corresponding attributes in
FORMULA are as follows:

InitialStateEnum ::= { On, Off }.
InitialState ::= fun (SwitchableJunction =>

InitialStateEnum).
OnEvent ::= new (SwitchableJunction, String).
OffEvent ::= new (SwitchableJunction, String).

Finally, the multiplicity constraints of the new attributes are
defined as rules:

// Switchable junctions should have at least one on event.
invalidOnEvent := X is SwitchableJunction,

no OnEvent(X,_).
// Switchable junctions should have at least one off event.
invalidOffEvent := X is SwitchableJunction,

no OffEvent(X,_).

A hybrid bond graph conforms to the hybrid bond graph
metamodel if it conforms to the original bond graph meta-
model and does not satisfy the new ill-formedness constraints:

BGconforms :- no invalidNode.
conforms :- BGconforms,

no invalidOnEvent,
no invalidOffEvent.

C. Behavior of Hybrid Bond Graphs

We also have to extend our DAE domain with automata
behavior to be able to describe the behavior of hybrid bond
graphs. The behavior of a switchable junction is defined by an
automaton with two modes (On and Off) and two transitions
which are triggered by external events (identified by strings). A
switchable junction has a non-empty set of OnEvent attributes
that define the events which drive the automaton from the Off

mode to On mode. Similarly, OffEvent defines the events for
the reverse transition. In the case when the hybrid bond graph
have several switchable junctions, the behavior is defined as
the Cartesian product of the machines defined by the individual
switchable junctions.

Similar to the bond graph denotational specification, we
wish to define a denotational semantic domain and a semantic
mapping which transforms hybrid bond graphs to this semantic
domain. In order to support the denotational specification
of hybrid bond graphs, we need a semantic domain with
support for automata. Therefore, we define the domain of
ParallelHybridAutomata by extending the DAEs domain by
a simple automata model as shown below.

A parallel hybrid automata is composed of parallel run-
ning machine-s. A machine has two loc-ations, on and off.
Associated with their on and off locations, each machine

has a set of activities, onAct and offAct, defined as DAE
equations. A switchOn/switchOff transition is a tuple of
(m, ev) which describes the transition of machine m from
the off/on location to the on/off location on event ev. Each
machine has an initialLoc-ation. Finally, since the domain
of parallel hybrid automata extends the domain of DAEs, it
automatically inherits the data constructors defined in that
domain (e.g. variables and equations).

domain ParallelHybridAutomata extends DAEs
{
loc ::= { on, off }.
label ::= new (String).
machine ::= new (UID).
onAct ::= new (m:machine,act:eq).
offAct ::= new (m:machine,act:eq).
switchOn ::= new (m:machine,ev:label).
switchOff ::= new (m:machine,ev:label).
initialLoc ::= fun (m:machine => init:loc).

}



Equivalently, a parallel hybrid automaton is a tuple H = 〈
var, eq, machine, onAct, offAct, label, switchOn, switchOff,
initialLoc 〉.
• A finite set var of variables, for which a valuation v is a

function that assigns a real value to each variable.
• A finite set eq of location-independent activities (DAEs)

that constrain the possible valuation of variables.
• A finite set machine of machines.
• Location-dependent activities (DAEs) onAct and offAct

that constrain the possible valuation of variables in the
on and off state of the machine.

• A finite set label of event labels.
• Transition relation switchOn where each transition ton =
(m, e) defines a transition of machine m from location
off to location on on labeled event e.

• Transition relation switchOff where each transition toff =
(m, e) defines a transition of machine m from location
on to location off on labeled event e.

• A finite set initialLoc of initial locations, one for each
machine in the hybrid system.

In the following we describe the semantics of such a hybrid
automata built upon the seminal paper [20]. The behavior of a
hybrid system is given in terms of the runs it produces. At any
time instant, the state of the system is completely determined
by the current locations L = {l1, l2, . . .} of the machines
(li being the location of machine i), and valuation v. The
state can change in two ways: either by a discrete transition
between locations, or by continuous evolution of the variables
according to the activities.

A run of the system is a sequence σ0 →t0 σ1 →t1

σ2 →t2 · · · of states where σi = (Li, vi) is a state defined
by the current locations of the machines and the variable
valuations, and ti are time instants at which event ei arrives.
The continuous evolution between events are defined by the
current location-dependent activities onAct and offAct, and the
location-independent activities eq. Given the DAE equations
over variables var, the continuous evolution of the system is
the set of valuations that satisfy these equations. In the usual
representation of DAE equations, valuation v is constrained
by the equations F (v̇(t), v(t), t) = 0, where t, the time, is the
independent variable, and F is defined by the set of activities.

The discrete state transitions at time instants ti are defined
by event ei and locations Li−1 = {l1i−1, l2i−1, . . .}, where each
location lji−1 denotes the location of machine j at time ti−1.
A machine m is fired if there is a transition switchOn or
switchOff, such that t = (m, e) from the current location and is
triggered by event e. Function update : state× event→ state
specifies these discrete transitions.

The update function of the parallel automaton is given as a
parallel update of the individual machines. In the following,
upm : location× event→ location is the update function for
machine m:

update((Li−1, v), e) = ((up1(l
1
i−1, e), . . . , upn(l

n
i−1, e)), v)

upm(l, e) =

off if l =on ∧ switchOff (m, e)
on if l =off ∧ switchOn(m, e)
l otherwise

Finally, we can specify the denotational semantic mapping
of hybrid bond graphs by extending the denotational semantic
mapping of bond graphs. This also implies that the location-
independent activities of the hybrid bond graph are exactly the
same equations as the equations of the original bond graph.

Since we extend the original denotational semantic map-
ping, we reuse the mapping of the original bond graph ele-
ments, and we only have to define the structure of the machines
and the location-dependent activities. First, we define the
mapping of the structures (switchable junctions to machines)
as follows:

machine(X.id) :- X is SwJunction.
switchOn(M,E) :- X is SwJunction, M=machine(X.id),

OnEvent(X,E).
switchOff(M,E) :- X is SwJunction, M=machine(X.id),

OffEvent(X,E).
initialLoc(M,on) :- X is SwJunction,

M = machine(X.id),
InitialState(X,On).

initialLoc(M,off) :- X is SwJunction,
M = machine(X.id)
InitialState(X,Off).

Second, we define the location-dependent activities for the
machines. The behavior of switchable junctions is exactly the
same as the behavior of ordinary junctions as long as they
are turned on, thus the location-dependent activities onAct are
empty in the turned-on mode. However, when a switchable
junction is turned off, it extends the governing differential
algebraic equations as follows:

offAct(M,eq(F,0)) :- SwJunction(X), M=machine(X.id),
connects(Y,X), b(Y,_,F).

With the meaning that there is no flow along the bonds of a
turned-off junction.

VII. CONCLUSION

Precise specifications are essential for the development
of CPS systems used in safety-critical scenarios. Semantic
mismatches and ambiguities are major issues leading to invalid
designs, therefore unambiguous and formal specification of
structural and behavioral semantics have far-reaching impact
on model-based development of CPS. Usually, DSML spec-
ification stops at the level of abstract syntax metamodels
(static model), however, in this paper we demonstrated our
formal logic based technique for the unambiguous, extensible,
reusable and executable specification of both structure and
behavior of CPS languages. An important feature is that we
used the same logic based language for both the structural
and behavioral specifications. Using logic for both the well-
formedness rules and the semantic mapping (transforma-
tions) facilitates comprehensibility, mathematical reasoning,
language reusability and the creation of other language variants
as demonstrated in our work.

We illustrated the framework for formal specifications by
a bond graph language example, for which we specified the



structural and behavioral semantics, as well as presented the
extensibility of such specifications by adding physical domain
specific elements and hybrid behavior. In order to specify the
behavioral semantics of the language, first we defined a seman-
tic domain, the domain of differential algebraic equations, then
we specified a denotational semantic mapping from the bond
graph domain to our semantic domain. In order to augment the
language with hybrid dynamics elements, we also augmented
the semantic domain with the notion of parallel automata.

Since our specifications are executable, FORMULA can
compute if a model conforms to its metamodel. This can be
used for structural verification of models. Further, FORMULA
can perform the denotational semantic mapping to obtain the
semantic description of a well-formed model. Such a semantic
description can be used for rapid prototyping and simulations.
For example, by transforming a bond graph model to a set of
DAEs, they are readily simulatable by any tools that can solve
these equations (e.g. Modelica [21]).

We developed automated tools for generating FORMULA
domains from GME metamodels, and FORMULA models
from GME models. Further, we can execute the FORMULA
transformations to obtain a set of DAEs, and we have an
automated tool for generating Modelica simulations based
on the DAEs. Using these tools, we have formalized several
languages, both from the physical, computational and CPS
integration domains. We have specified the structural and
behavioral semantics for hybrid bond graphs, ESMoL (an
embedded software modeling language [22]) and CyPhyML
(Cyber-Physical Modeling Language [23], [24], [25]). These
specifications serve as the formal documentation for our lan-
guages, they facilitate correct-by-construction modeling, and
serve as a reference implementation for model transformations,
that can be used for specification-based testing.

Note that in this work the formalization of the semantic
domain was not a goal. At the current stage of our research, we
use FORMULA for formalizing the structural well-formedness
rules, and describing behavioral semantic mappings to differ-
ent semantic domains. However, it is an important next step
to examine in what extent the semantic domains themselves
can be formalized using FORMULA.

We have chosen FORMULA as our formalization language,
because it is a declarative language with clear semantics, and
a good balance between expressiveness and executability. On
one side, this allows us to do automated model checking,
model finding and conformance testing, on the other side it
may turn out that FORMULA is not expressive enough to
describe every concept that arises during formalization. Our
experiences with FORMULA shows that the language is well-
suited for the formalization of structural semantics, operational
semantics, and denotational semantic mapping, and in the
future we plan to research its applicability in verification of
hybrid systems.

ACKNOWLEDGEMENT

We are grateful for the useful comments from three anony-
mous referees. This work was supported by the National

Science Foundation under grant number CNS-1035655.

REFERENCES

[1] K. Chen, J. Sztipanovits, S. Abdelwalhed, and E. Jackson, “Semantic
anchoring with model transformations,” in ECMDA-FA. Springer, 2005,
pp. 115–129.

[2] K. Chen, J. Sztipanovits, and S. Neema, “Compositional specification
of behavioral semantics,” in DATE, 2007, p. 906–911.

[3] E. Lee, “Cyber physical systems: Design challenges,” in ISORC. IEEE,
2008, pp. 363–369.

[4] J. Willems, “The behavioral approach to open and interconnected
systems,” IEEE Control Systems, vol. 27, no. 6, pp. 46 –99, 2007.

[5] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet, “Non-standard
semantics of hybrid systems modelers,” Journal of Computer and System
Sciences, 2011.

[6] D. Karnopp, D. Margolis, and R. Rosenberg, System dynamics: modeling
and simulation of mechatronic systems. Wiley, New York, 1997.

[7] E. Jackson, E. Kang, M. Dahlweid, D. Seifert, and T. Santen, “Compo-
nents, platforms and possibilities: towards generic automation for MDA,”
in EMSOFT, 2010, p. 39–48.

[8] P. Mosterman and G. Biswas, “A theory of discontinuities in physical
system models,” Journal of the Franklin Institute, vol. 335, no. 3, p.
401–439, 1998.

[9] J. Rivera and A. Vallecillo, “Adding behavior to models,” in EDOC.
IEEE, 2007, pp. 169–169.

[10] G. Hamon, “A denotational semantics for stateflow,” in EMSOFT.
ACM, 2005, pp. 164–172.

[11] G. Hamon and J. Rushby, “An operational semantics for stateflow,”
International Journal on Software Tools for Technology Transfer (STTT),
vol. 9, no. 5, pp. 447–456, 2007.

[12] D. Varró, “Automated formal verification of visual modeling languages
by model checking,” Software and Systems Modeling, vol. 3, no. 2, pp.
85–113, 2004.

[13] A. Gargantini, E. Riccobene, and P. Scandurra, “A semantic frame-
work for metamodel-based languages,” Automated software engineering,
vol. 16, no. 3, pp. 415–454, 2009.

[14] E. Jackson, R. Thibodeaux, J. Porter, and J. Sztipanovits, “Semantics
of Domain-Specific modeling languages,” Model-Based Design for Em-
bedded Systems, p. 437, 2009.

[15] D. Balasubramanian and E. Jackson, “Lost in translation: Forgetful
semantic anchoring,” in ASE. IEEE Computer Society, 2009, pp. 645–
649.

[16] E. Jackson, W. Schulte, D. Balasubramanian, and G. Karsai, “Reusing
model transformations while preserving properties,” Fundamental Ap-
proaches to Software Engineering, pp. 44–58, 2010.

[17] “FORMULA,” research.microsoft.com/en-us/projects/formula.
[18] E. Jackson, N. Bjørner, and W. Schulte, “Canonical regular types,” ICLP

(Technical Communications), p. 73–83, 2011.
[19] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Garrett, C. Thomason,

G. Nordstrom, J. Sprinkle, and P. Volgyesi, “The generic modeling
environment,” in ISP Workshop, vol. 17, 2001.

[20] R. Alur, C. Courcoubetis, T. Henzinger, and P. Ho, “Hybrid automata:
An algorithmic approach to the specification and verification of hybrid
systems,” Hybrid systems, pp. 209–229, 1993.

[21] Modelica Association, “Modelica - a unified object oriented language for
physical system modeling, language specification, version 3.3,” 2012.

[22] J. Porter, G. Hemingway, Nine, H., vanBuskirk, C., Kottenstette, N.,
Karsai, G., and Sztipanovits, J., “The ESMoL language and tools for
High-Confidence distributed control systems design.” ISIS, Vanderbilt
Univ., Nashville, TN, Tech. Report ISIS-10-109, 2010.

[23] R. Wrenn, A. Nagel, R. Owens, H. Neema, F. Shi, K. Smyth, D. Yao,
J. Ceisel, J. Porter, C. vanBuskirk, S. Neema, T. Bapty, D. Mavris, and
J. Sztipanovits, “Towards automated exploration and assembly of vehicle
design models,” in ASME IDETC/CIE, 2012.

[24] Z. Lattmann, A. Nagel, J. Scott, K. Smyth, J. Ceisel, C. vanBuskirk,
J. Porter, T. Bapty, S. Neema, D. Mavris, and J. Sztipanovits, “Towards
automated evaluation of vehicle dynamics in System-Level designs,” in
ASME IDETC/CIE, 2012.

[25] G. Simko, T. Levendovszky, S. Neema, E. Jackson, T. Bapty, J. Porter,
and J. Sztipanovits, “Foundation for model integration: Semantic back-
plane,” in ASME IDETC/CIE, 2012.


